已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象,如圖所示,f(0)=-
3
2
,則A的值是( 。
A、1
B、
2
C、
3
D、2
考點(diǎn):y=Asin(ωx+φ)中參數(shù)的物理意義
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)三角函數(shù)的圖象,確定A,ω和φ的值即可得到結(jié)論.
解答: 解:由圖象知函數(shù)的周期T=2(
3
-
π
6
)=π,即
ω
,
解得ω=2,
由五點(diǎn)對(duì)應(yīng)法則
π
6
+φ=0

解得φ=-
π
3

則函數(shù)f(x)=Asin(2x-
π
3
),
∵f(0)=-
3
2

∴f(0)=Asin(-
π
3
)=-
3
2
A
=-
3
2
,
即A=
3
,
故選:C
點(diǎn)評(píng):本題主要考查三角函數(shù)解析式的求解,根據(jù)條件確定A,ω和φ的值是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,△ABC的兩個(gè)頂點(diǎn)A,B的坐標(biāo)分別是(-
2
,0),(
2
,0),點(diǎn)G是△ABC的重心,y軸上一點(diǎn)M滿足GM∥AB,且|MC|=|MB|.
(Ⅰ)求△ABC的頂點(diǎn)C的軌跡E的方程;
(Ⅱ)不過點(diǎn)A的直線l與軌跡E交于不同的兩點(diǎn)P,Q.若以PQ為直徑的圓過點(diǎn)A時(shí),試判斷直線l是否過定點(diǎn)?若過,請求出定點(diǎn)坐標(biāo),不過,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用反證法證明命題:“已知a、b∈N+,如果ab可被 5 整除,那么a、b 中至少有一個(gè)能被 5 整除”時(shí),假設(shè)的內(nèi)容應(yīng)為( 。
A、a、b 都能被5 整除
B、a、b 都不能被5 整除
C、a、b 不都能被5 整除
D、a 不能被5 整除

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“任何三角形的外角都至少有兩個(gè)鈍角”的否定應(yīng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2,1),
b
=(3,λ),若(2
a
-
b
)⊥
b
,則λ的值為( 。
A、3B、-1
C、-1或3D、-3或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求2
k
4k4+8k2+1
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(x-
π
4
)=-
5
13
,則sin2x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|y=
x-1
},B={x|x>a},則“a=0”是“A⊆B”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD是空間四邊形,E,F(xiàn),G,H分別是邊AB,BC,CD,DA的中點(diǎn)
(1)求證:EFGH是平行四邊形
(2)若BD=2
3
,求異面直線AC、BD所成的角和EG、BD所成的角.

查看答案和解析>>

同步練習(xí)冊答案