【題目】如圖,三棱柱中,M,N分別為的中點(diǎn).
(1)證明:直線MN//平面CAB1;
(2)若四邊形ABB1A1是菱形,且, ,求平面和平面所成的角(銳角)的余弦值.
【答案】(1)見解析;(2)余弦值為.
【解析】試題分析:
(1)由題意結(jié)合幾何關(guān)系可證得,利用線面平行的判定定理可證得直線MN//平面CAB1;
(2)結(jié)合幾何體的特征建立空間直角坐標(biāo)系,利用半平面的法向量可求得平面和平面所成的角(銳角)的余弦值為.
試題解析:
(1)設(shè)與交于點(diǎn),連接,
因?yàn)樗倪呅?/span>是平行四邊形,所以是是的中點(diǎn),
是的中點(diǎn),所以.
又因?yàn)?/span>是的中點(diǎn),所以.
所以,所以四邊形是平行四邊形,
所以.
又因?yàn)?/span>平面,平面,
所以直線平面.
(2)因?yàn)槠叫兴倪呅?/span>是菱形,所以.
又因?yàn)?/span>,所以.又且是的中點(diǎn),所以.又因?yàn)?/span>,所以≌,所以,故,從而兩兩垂直. 以為坐標(biāo)原點(diǎn),所在直線分別為軸建立如圖空間直角坐標(biāo)系,
則, ,
,
因?yàn)?/span>兩兩垂直,所以平面,
所以是平面的一個(gè)法向量;
設(shè)是平面的一個(gè)法向量,則,即,
令,得,所以
所以
所以平面和平面所成的角(銳角)的余弦值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列為遞增的等比數(shù)列, ,
數(shù)列滿足.
(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)求證: 是等差數(shù)列;
(Ⅲ)設(shè)數(shù)列滿足,且數(shù)列的前項(xiàng)和,并求使得對(duì)任意都成立的正整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),過右焦點(diǎn)且垂直于軸的直線截橢圓所得弦長(zhǎng)是1.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)分別是橢圓的左,右頂點(diǎn),過點(diǎn)的直線與橢圓交于兩點(diǎn)(與不重合),證明:直線和直線交點(diǎn)的橫坐標(biāo)為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>,即,若,則稱在上封閉.
(1)分別判斷函數(shù), 在上是否封閉,說明理由;
(2)函數(shù)的定義域?yàn)?/span>,且存在反函數(shù),若函數(shù)在上封閉,且函數(shù)在上也封閉,求實(shí)數(shù)的取值范圍;
(3)已知函數(shù)的定義域?yàn)?/span>,對(duì)任意,若,有恒成立,則稱在上是單射,已知函數(shù)在上封閉且單射,并且滿足 ,其中(),,證明:存在的真子集,
,使得在所有()上封閉.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,點(diǎn)M的坐標(biāo)為,曲線C的方程為;以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,斜率為的直線l經(jīng)過點(diǎn)M.
(I)求直線l和曲線C的直角坐標(biāo)方程:
(II)若P為曲線C上任意一點(diǎn),直線l和曲線C相交于A,B兩點(diǎn),求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國“霧霾天氣”頻發(fā),嚴(yán)重影響人們的身體健康.根據(jù)空氣質(zhì)量指數(shù)API(為整數(shù))的不同,可將空氣質(zhì)量分級(jí)如下表:
API | 0~50 | 51~100 | 101~150 | 151~200 | 201~250 | 251~300 | >300 |
級(jí)別 | Ⅰ | Ⅱ | Ⅲ1 | Ⅲ2 | Ⅳ1 | Ⅳ2 | Ⅴ |
狀況 | 優(yōu) | 良 | 輕微污染 | 輕度污染 | 中度污染 | 中度重污染 | 重度污染 |
對(duì)某城市一年(365天)的空氣質(zhì)量進(jìn)行監(jiān)測(cè),獲得的API數(shù)據(jù)按照區(qū)間[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]進(jìn)行分組,得到頻率分布直方圖如圖.
(1)求頻率分布直方圖中x的值;
(2)計(jì)算一年中空氣質(zhì)量分別為良和輕微污染的天數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知多面體的底面是邊長(zhǎng)為的菱形, 底面, ,且.
(1)證明:平面平面;
(2)若直線與平面所成的角為,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,為正三角形,,,,平面.
(Ⅰ)點(diǎn)在棱上,試確定點(diǎn)的位置,使得平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今有一組數(shù)據(jù)如下表:
1 | 2 | 3 | 4 | 5 | 6 | |
4 | 5 | 6 | 7 | 8 | 9 | |
90 | 84 | 83 | m | 75 | 68 |
由最小二乘法求得點(diǎn) 的回歸直線方程是,其中.
(Ⅰ)求m的值,并求回歸直線方程;
(Ⅱ)設(shè),我們稱為點(diǎn)的殘差,記為.
從所給的點(diǎn) 中任取兩個(gè),求其中有且只有一個(gè)點(diǎn)的殘差絕對(duì)值不大于1的概率.
參考公式: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com