【題目】德陽(yáng)中學(xué)數(shù)學(xué)競(jìng)賽培訓(xùn)共開設(shè)有初等代數(shù)、初等幾何、初等數(shù)論和微積分初步共四門課程,要求初等代數(shù)、初等幾何都要合格,且初等數(shù)論和微積分初步至少有一門合格,則能取得參加數(shù)學(xué)競(jìng)賽復(fù)賽的資格,現(xiàn)有甲、乙、丙三位同學(xué)報(bào)名參加數(shù)學(xué)競(jìng)賽培訓(xùn),每一位同學(xué)對(duì)這四門課程考試是否合格相互獨(dú)立,其合格的概率均相同,(見下表),且每一門課程是否合格相互獨(dú)立,


初等代數(shù)

初等幾何

初等數(shù)論

微積分初步

合格的概率





1)求甲同學(xué)取得參加數(shù)學(xué)競(jìng)賽復(fù)賽的資格的概率;

2)記表示三位同學(xué)中取得參加數(shù)學(xué)競(jìng)賽復(fù)賽的資格的人數(shù),求的分布列及期望

【答案】(1);(2) 見解析.

【解析】

(1)先將合格事件標(biāo)記,然后根據(jù)題目給出的條件求出復(fù)賽的資格的概率.

(2)直接根據(jù)離散型隨機(jī)變量的概率計(jì)算方法解答.

1 分別記甲對(duì)這四門課程考試合格為事件,甲能修得該課程學(xué)分的概率為,事件相互獨(dú)立,

.

(2),,,

因此,的分布列如下:

因?yàn)?/span>

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面平面,,,點(diǎn)在棱上,且.

(Ⅰ)求證:;

(Ⅱ)是否存在實(shí)數(shù),使得二面角的余弦值為?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),,其中.若函數(shù)在區(qū)間上有且僅有一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是__

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近來(lái)國(guó)內(nèi)一些互聯(lián)網(wǎng)公司為了贏得更大的利潤(rùn)、提升員工的奮斗姿態(tài),要求員工實(shí)行工作制,即工作日早點(diǎn)上班,晚上點(diǎn)下班,中午和傍晚最多休息小時(shí),總計(jì)工作小時(shí)以上,并且一周工作天的工作制度,工作期間還不能請(qǐng)假,也沒(méi)有任何補(bǔ)貼和加班費(fèi).消息一出,社交媒體一片嘩然,有的人認(rèn)為這是違反《勞動(dòng)法》的一種對(duì)員工的壓榨行為,有的人認(rèn)為只有付出超越別人的努力和時(shí)間,才能夠?qū)崿F(xiàn)想要的成功,這是提升員工價(jià)值的一種有效方式.對(duì)此,國(guó)內(nèi)某大型企業(yè)集團(tuán)管理者認(rèn)為應(yīng)當(dāng)在公司內(nèi)部實(shí)行工作制,但應(yīng)該給予一定的加班補(bǔ)貼(單位:百元),對(duì)于每月的補(bǔ)貼數(shù)額集團(tuán)人力資源管理部門隨機(jī)抽取了集團(tuán)內(nèi)部的名員工進(jìn)行了補(bǔ)貼數(shù)額(單位:百元)期望值的網(wǎng)上問(wèn)卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:

組別(單位:百元)

頻數(shù)(人數(shù))

)求所得樣本的中位數(shù)(精確到百元);

)根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為員工的加班補(bǔ)貼X服從正態(tài)分布,若該集團(tuán)共有員工,試估計(jì)有多少員工期待加班補(bǔ)貼在元以上;

)已知樣本數(shù)據(jù)中期望補(bǔ)貼數(shù)額在范圍內(nèi)的名員工中有名男性,名女性,現(xiàn)選其中名員工進(jìn)行消費(fèi)調(diào)查,記選出的女職員人數(shù)為,求的分布列和數(shù)學(xué)期望.

附:若,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本小題滿分12分,1小問(wèn)7分,2小問(wèn)5分

設(shè)函數(shù)

1處取得極值,確定的值,并求此時(shí)曲線在點(diǎn)處的切線方程;

2上為減函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店每天(開始營(yíng)業(yè)時(shí))以每件15元的價(jià)格購(gòu)入商品若干(商品在商店的保鮮時(shí)間為8小時(shí),該商店的營(yíng)業(yè)時(shí)間也恰好為8小時(shí)),并開始以每件30元的價(jià)格出售,若前6小時(shí)內(nèi)所購(gòu)進(jìn)的商品沒(méi)有售完,則商店對(duì)沒(méi)賣出的商品將以每件10元的價(jià)格低價(jià)處理完畢(根據(jù)經(jīng)驗(yàn),2小時(shí)內(nèi)完全能夠把商品低價(jià)處理完畢,且處理完畢后,當(dāng)天不再購(gòu)進(jìn)商品).該商店統(tǒng)計(jì)了100商品在每天的前6小時(shí)內(nèi)的銷售量,由于某種原因銷售量頻數(shù)表中的部分?jǐn)?shù)據(jù)被污損而不能看清,制成如下表格(注:視頻率為概率).

6小時(shí)內(nèi)的銷售量

(單位:件)

3

4

5

頻數(shù)

30

1)若某天商店購(gòu)進(jìn)商品4件,試求商店該天銷售商品獲取利潤(rùn)的分布列和期望;

2)若商店每天在購(gòu)進(jìn)4商品時(shí)所獲得的平均利潤(rùn)最大,求的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,正確的命題的是(

A.已知隨機(jī)變量服從二項(xiàng)分布,若,則;

B.將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上同一個(gè)常數(shù)后,方差恒不變;

C.設(shè)隨機(jī)變量服從正態(tài)分布,若,則;

D.某人在10次射擊中,擊中目標(biāo)的次數(shù)為,,則當(dāng)時(shí)概率最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),點(diǎn)在函數(shù)的圖象上運(yùn)動(dòng),直線與函數(shù)的圖象不相交,求點(diǎn)到直線距離的最小值;

(Ⅱ)討論函數(shù)零點(diǎn)的個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:

將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為體育迷

1)根據(jù)已知條件完成下面的2×2列聯(lián)表;

2)根據(jù)此資料,判斷是否有的把握認(rèn)為體育迷與性別有關(guān)?

非體育迷

體育迷

合計(jì)

10

55

合計(jì)

附:,其中.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案