【題目】如圖,在四棱錐中,平面平面,,,,點(diǎn)在棱上,且.

(Ⅰ)求證:

(Ⅱ)是否存在實(shí)數(shù),使得二面角的余弦值為?若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.

【答案】(Ⅰ)見解析;(Ⅱ).

【解析】試題分析:(1)由邊長和勾股定理得又平面平面,由定理證得平面 (2) 建立空間直角坐標(biāo)系, 得出平面的一個法向量為

,設(shè)平面的一個法向量為,由題意計算得出結(jié)果

解析:(Ⅰ)過點(diǎn)

,,

四邊形為正方形,且,

中,,在中,

又平面平面,平面平面

平面

平面,且

平面

(Ⅱ)

又平面平面,平面平面

平面 ,

以點(diǎn)為坐標(biāo)原點(diǎn),、所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系,

假設(shè)存在實(shí)數(shù)使得二面角的余弦值為,令

點(diǎn)在棱上,

設(shè)

,

平面,平面的一個法向量為

設(shè)平面的一個法向量為

化簡得

存在實(shí)數(shù)使得二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.已知直線的參數(shù)方程是是參數(shù)),圓的極坐標(biāo)方程為.

(1)求圓心的直角坐標(biāo);

(2)由直線上的點(diǎn)向圓引切線,并切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點(diǎn)為,離心率.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于,兩點(diǎn),線段的垂直平分線交軸于點(diǎn),當(dāng)變化時,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)(其中).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時,討論函數(shù)的零點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直角坐標(biāo)系中動點(diǎn),參數(shù),在以原點(diǎn)為極點(diǎn)、軸正半軸為極軸所建立的極坐標(biāo)系中,動點(diǎn)在曲線上.

(1)求點(diǎn)的軌跡的普通方程和曲線的直角坐標(biāo)方程;

(2)若動點(diǎn)的軌跡和曲線有兩個公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率為,且過點(diǎn).

(1)求的方程;

(2)若動點(diǎn)在直線上,過作直線交橢圓兩點(diǎn),使得,再過作直線,證明:直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓)的左、右焦點(diǎn)分別為,,過作垂直于軸的直線與橢圓在第一象限交于點(diǎn),若,且.

(Ⅰ)求橢圓的方程;

(Ⅱ),是橢圓上位于直線兩側(cè)的兩點(diǎn).若直線過點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為兩點(diǎn)的極坐標(biāo)分別為.

(1)求圓的普通方程和直線的直角坐標(biāo)方程;

(2)點(diǎn)是圓上任一點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,,

)求函數(shù)的單增區(qū)間.

)若,求值.

)在中,角,的對邊分別是,.且滿足,求函數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案