【題目】某環(huán)境保護(hù)部門對(duì)某處的環(huán)境狀況用“污染指數(shù)”來監(jiān)測(cè),據(jù)測(cè)定,該處的“污染指數(shù)”與附近污染源的強(qiáng)度和距離之比成正比,比例系數(shù)為常數(shù),現(xiàn)已知相距兩家化工廠(污染源)的污染強(qiáng)度分別為1,它們連線段上任意一點(diǎn)處的污染指數(shù)等于兩化工廠對(duì)該處的污染指數(shù)之和,設(shè);

1)試將表示為的函數(shù),指出其定義域;

2)當(dāng)時(shí),處的“污染指數(shù)”最小,試求化工廠的污染強(qiáng)度的值;

【答案】(1) , ; (2)

【解析】

(1)設(shè)點(diǎn)污染源污染程度為,點(diǎn)污染源污染程度為,其中為比例系數(shù),且,則點(diǎn)處受污染程度是二者之和,定義域?yàn)?/span>.
(2)因?yàn)?/span> ,所以 ,令 ,得

(1) 設(shè)點(diǎn)污染源污染程度為,

點(diǎn)污染源污染程度為.取值為比例系數(shù)且.
所以點(diǎn)點(diǎn)處受污染程度為,.

(2)由,所以,

當(dāng)時(shí),處的“污染指數(shù)”最小,

時(shí),函數(shù)取得最小值.

,則函數(shù)的最小值一定是對(duì)應(yīng)的極小值點(diǎn).

,由,解得.

當(dāng)時(shí),.

函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,滿足條件.

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓,為橢圓的左右頂點(diǎn),焦點(diǎn)到短軸端點(diǎn)的距離為2,且為橢圓上異于的兩點(diǎn),直線的斜率等于直線斜率的2.

1)求直線與直線的斜率乘積值;

2)求證:直線過定點(diǎn),并求出該定點(diǎn);

3)求三角形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年女排世界杯中,中國(guó)女子排球隊(duì)以11連勝的優(yōu)異戰(zhàn)績(jī)成功奪冠,為祖國(guó)母親七十華誕獻(xiàn)上了一份厚禮.排球比賽采用53勝制,前4局比賽采用25分制,每個(gè)隊(duì)只有贏得至少25分,并同時(shí)超過對(duì)方2分時(shí),才勝1局;在決勝局(第五局)采用15分制,每個(gè)隊(duì)只有贏得至少15分,并領(lǐng)先對(duì)方2分為勝.在每局比賽中,發(fā)球方贏得此球后可得1分,并獲得下一球的發(fā)球權(quán),否則交換發(fā)球權(quán),并且對(duì)方得1.現(xiàn)有甲乙兩隊(duì)進(jìn)行排球比賽:

1)若前三局比賽中甲已經(jīng)贏兩局,乙贏一局.接下來兩隊(duì)贏得每局比賽的概率均為,求甲隊(duì)最后贏得整場(chǎng)比賽的概率;

2)若前四局比賽中甲、乙兩隊(duì)已經(jīng)各贏兩局比賽.在決勝局(第五局)中,兩隊(duì)當(dāng)前的得分為甲、乙各14分,且甲已獲得下一發(fā)球權(quán).若甲發(fā)球時(shí)甲贏1分的概率為,乙發(fā)球時(shí)甲贏1分的概率為,得分者獲得下一個(gè)球的發(fā)球權(quán).設(shè)兩隊(duì)打了個(gè)球后甲贏得整場(chǎng)比賽,求x的取值及相應(yīng)的概率px.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐A-BCD中,平面ABC丄平面ADC, ADAC,AD=AC, ,若此三棱錐的外接球表面積為,則三棱錐A-BCD體積的最大值為(

A.7B.12C.6D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程。

已知曲線Ct為參數(shù)), C為參數(shù))。

1)化C,C的方程為普通方程,并說明它們分別表示什么曲線;

2)若C上的點(diǎn)P對(duì)應(yīng)的參數(shù)為QC上的動(dòng)點(diǎn),求中點(diǎn)到直線

t為參數(shù))距離的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】邊長(zhǎng)為2的等邊和有一內(nèi)角為的直角所在半平面構(gòu)成的二面角,則下列不可能是線段的取值的是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,平面,.

1)求證:平面;

2)求異面直線所成角的大;

3)點(diǎn)在線段上,且,點(diǎn)在線段上,若平面,求的值(用含的代數(shù)式表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù)滿足對(duì)任意,成立,當(dāng)時(shí),,則在內(nèi),函數(shù)的所有零點(diǎn)之和為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)判斷函數(shù)的奇偶性,并說明理由;

2)若R上的偶函數(shù),且關(guān)于x的不等式上恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案