方程|x2-1|+1=2x解的個數(shù)為( 。
A、1B、2C、3D、4
考點:根的存在性及根的個數(shù)判斷
專題:函數(shù)的性質及應用
分析:構造g(x)=|x2-1|+1,f(x)=2x,作圖判斷據(jù)圖象有3個交點,解得出方程解的個數(shù).
解答: 解:∵|x2-1|+1=2x,
∴g(x)=
x2,x<-1,或x>1
2-x2,-1≤x≤1
,f(x)=2x,
∴-1≤x≤1,2-x2=2x,運用圖象判斷1個交點,
x>1,或x<-1,x2=2x,畫圖圖象有2個交點,x=2,x=4,成立.



綜上:有3個交點,
∴方程|x2-1|+1=2x解的個數(shù)為3,
故選:C
點評:本題考查了函數(shù)零點問題,轉化為構造函數(shù)交點個數(shù)求解,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知
a
=(4,3),
b
=(-1,2),
m
=
a
b
,
n
=2
a
+
b
,按照下列條件求實數(shù)λ的值:
(1)
m
n
;
(2)
m
n

(3)|
m
|=|
n
|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

cos(-
17π
4
 
sin(-
17π
4
)(填“>”或“<”)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下四個命題中,真命題的個數(shù)是(  )
①“若a+b≥2則a,b中至少有一個不小于1”的逆命題;
②存在正實數(shù)a,b,使得lg(a+b)=lga+lgb;
③“所有奇數(shù)都是素數(shù)”的否定是“至少有一個奇數(shù)不是素數(shù)”;
④在△ABC中,A<B是sinA<sinB的充分不必要條件.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=alnx-x+
1
x

(1)判斷函數(shù)f(x)的單調性;
(2)證明:當x>0時,ln(1+
1
x
)<
1
x2+x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+(y-1)2=5,
(1)求過點M(3,2)且與圓相切的直線方程;
(2)若直線l:mx-y-m+1=0,與圓C相交于A、B兩點,且|AB|=
17
,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(-7,0),B(7,0),C(2,-12),橢圓過A、B兩點且以C為其一個焦點,求橢圓另一個焦點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P在圓C:x2+y2-8x-6y+21=0上運動,求線段OP中點M的坐標(x,y)應滿足的關系式
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2分別是橢圓C1
x2
a2
+y2=1(a>1)的左、右焦點,O為坐標原點.
(Ⅰ)若橢圓C1與雙曲線C2
y2
3
-
x2
1
=1的離心率互為倒數(shù),求此時實數(shù)a的值;
(Ⅱ)若直線l經過點F1和點(0,1),且原點到直線l的距離為
2
2
;又另一條直線m,斜率為1,與橢圓C1交于E,F(xiàn)兩點,
OE
OF
,求直線m的方程;
(Ⅲ)若在直線x=
a2
a2-1
上存在點P,使線段PF1的中點M
MF2
PF1
.求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案