已知圓C:x2+(y-1)2=5,
(1)求過點M(3,2)且與圓相切的直線方程;
(2)若直線l:mx-y-m+1=0,與圓C相交于A、B兩點,且|AB|=
17
,求m的值.
考點:直線和圓的方程的應(yīng)用,圓的標(biāo)準(zhǔn)方程
專題:直線與圓
分析:(1)設(shè)切線的斜率,利用直線和圓相切的關(guān)系即可得到結(jié)論.
(2)根據(jù)直線和圓相交的弦長公式即可得到結(jié)論.
解答: 解:(1)設(shè)直線方程的斜率為k,
則直線方程為y-2=k(x-3),即kx-y+2-3k=0,
當(dāng)直線和圓相切時,圓心到直線的距離d=
|-1+2-3k|
1+k2
=
5

|3k-1|
1+k2
=
5
,
平方得2k2-3k-2=0,
解得k=2或k=-
1
2
,
即直線方程x+2y-7=0或2x-y-4=0.
(2)∵|AB|=
17

∴圓心到直線的距離d=
r2-(
|AB|
2
)2
=
5-
17
4
=
3
4
=
3
2
,
即d=
|-1-m+1|
1+m2
=
|m|
1+m2
=
3
2
,
平方得m2=3,解得m=±
3
點評:本題主要考查直線和圓的位置關(guān)系的應(yīng)用,轉(zhuǎn)化為點到直線的距離公式是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
log4x-1
2x-1
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x-1
+(x-2)0的定義域為(  )
A、{x|x≠2}
B、[1,2)∪(2,+∞)
C、{x|x>1}
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2ax-b2+16.
(1)若a,b是一枚骰子投擲兩次所得到的點數(shù),求函數(shù)f(x)無零點的概率;
(2)如圖,在邊長為4的正方形內(nèi)均勻地取n個點Pi(xi,yi),若a=xi,b=yi(i∈{1,2,…,n}),統(tǒng)計出使函數(shù)f(x)有兩個不相等零點的點Pi的個數(shù)為m,當(dāng)n充分大時,求圓周率π的近似值(用m,n表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程|x2-1|+1=2x解的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體OABC-D′A′B′C′的棱長為a,|AN|=2|CN|,|BM|=2|MC′|,求MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,∠A=90°,過點A作BC邊上的高AD,則
1
AD2
=
1
AB2
+
1
AC2
,請利用上述結(jié)論,類比推出,在空間四面體O-ABCD中,若OA,OB,OC兩兩垂直,O到平面ABC的距離為OD,則
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線Γ上的點P(x,y)到點F(1,0)的距離與它到x=4的距離之比為
1
2

(1)求出P點的軌跡方程
(2)過F(1,0)作直線l與曲線Γ交于A,B兩點,曲線Γ與x軸正半軸交于Q點,若△QAB的面積為
12
13
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差不為零的等差數(shù)列{an}的前3項和S3=9,且a1、a2、a5成等比數(shù)列.
(1)求數(shù)列{an)的通項公式;
(2)設(shè)Tn為數(shù)列{
1
anan+1
}的前n項和,求Tn

查看答案和解析>>

同步練習(xí)冊答案