7.已知曲線y=f(x)在x=5處的切線方程是y=-x+5,則f(5)與f'(5)分別為(  )
A.3,3B.3,-1C.-1,3D.0,-1

分析 利用導數(shù)的幾何意義得到f'(5)等于直線的斜率-1,由切點橫坐標為5,得到縱坐標即f(5).

解答 解:由題意得f(5)=-5+5=0,f′(5)=-1.
故選:D.

點評 本題考查了導數(shù)的幾何意義,考查學生的計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.將圓x2+y2=1上每一點的縱坐標保持不變,橫坐標變?yōu)樵瓉淼?倍,得到曲線C.
(1)寫出曲線C的參數(shù)方程;
(2)過點$N(\sqrt{3},0)$的直線l與C的交點為A,B,與y軸交于點M,且$\overrightarrow{AM}={λ_1}\overrightarrow{AN}$,$\overrightarrow{BM}={λ_2}\overrightarrow{BN}$,求λ12的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.(1)已知tanα=3,計算$\frac{3sinα+cosα}{sinα-2cosα}$;
(2)若cos(α+β)=$\frac{1}{5}$,cos(α-β)=$\frac{3}{5}$,求tanα•tanβ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.下列命題中:
①命題p:“?x0∈R,${x_0}^2-{x_0}-1>0$”的否定?p“?x∈R,x2-x-1≤0”;
②汽車的重量和汽車每消耗1升汽油所行駛的平均路程成正相關關系;
③命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;
④概率是隨機的,在試驗前不能確定.
正確的有①③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.命題“?x>0,ex-x-1≥0”的否定是?x>0,ex-x-1<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.(1)已知函數(shù)f(x)=x3-mx2-nx的圖象與x軸相切,切點為(1,0),且g(x)=f(x)+1,求g(x)的極值.
(2)已知f(x)=ax2+bx+c(a≠0),且f(-1)=2,f'(0)=0,$\int_{\;-1}^{\;0}{f(x)dx=-4}$,求a、b、c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)f(x)定義域為[0,+∞),當x∈[0,1]時,f(x)=sinπx,當x∈[n,n+1]時,f(x)=$\frac{f(x-n)}{{2}^{n}}$,其中n∈N,若函數(shù)f(x)的圖象與直線y=b有且僅有2016個交點,則b的取值范圍是(  )
A.(0,1)B.($\frac{1}{{2}^{1007}}$,$\frac{1}{{2}^{1006}}$)C.($\frac{1}{{2}^{2017}}$,$\frac{1}{{2}^{2016}}$)D.($\frac{1}{{2}^{1008}}$,$\frac{1}{{2}^{1007}}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在平面直角坐標系中,點P為曲線C上任意一點,且P到定點F(1,0)的距離比到y(tǒng)軸的距離多1.
(1)求曲線C的方程;
(2)點M為曲線C上一點,過點M分別作傾斜角互補的直線MA,MB與曲線C分別交于A,B兩點,過點F且與AB垂直的直線l與曲線C交于D,E兩點,若|DE|=8,求點M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.我邊防局接到情報,在海礁AB所在直線l的一側(cè)點M處有走私團伙在進行交易活動,邊防局迅速派出快艇前去搜捕.如圖,已知快艇出發(fā)位置在l的另一側(cè)碼頭P處,PA=8公里,PB=10公里,∠APB=60°.
(1)是否存在點M,使快艇沿航線P→A→M或P→B→M的路程相等.如存在,則建立適當?shù)闹苯亲鴺讼,求出點M的軌跡方程,且畫出軌跡的大致圖形;如不存在,請說明理由.
(2)問走私船在怎樣的區(qū)域上時,路線P→A→M比路線P→B→M的路程短,請說明理由.

查看答案和解析>>

同步練習冊答案