分析:(1)先對(duì)函數(shù)求導(dǎo),由x=2為f(x)的極值點(diǎn),可得f'(2)=0,代入可求a
(2)由題意可得
f′(x)=x[2ax2+(1-4a)x-(4a2+2)] |
2ax+1 |
≥0在區(qū)間[3,+∞)上恒成立,①當(dāng)a=0時(shí),容易檢驗(yàn)是否符合題意,②當(dāng)a≠0時(shí),由題意可得必須有2ax+1>0對(duì)x≥3恒成立,則a>0,從而2ax
2+(1-4a)x-(4a
2+2)≥0對(duì)x∈[3,+∞0上恒成立.考查函數(shù)g(x)=2ax
2+(1-4a)x-(4a
2+2),結(jié)合二次函數(shù)的性質(zhì)可求
(3)由題意可得
lnx-(1-x)2+(1-x)=.問(wèn)題轉(zhuǎn)化為b=xlnx-x(1-x)
2+x(1-x)=xlnx+x
2-x
3在(0,+∞)上有解,即求函數(shù)g(x)=xlnx+x
2-x
3的值域.
方法1:構(gòu)造函數(shù)g(x)=x(lnx+x-x
2),令h(x)=lnx+x-x
2(x>0),對(duì)函數(shù)h(x)求導(dǎo),利用導(dǎo)數(shù)判斷函數(shù)h(x)的單調(diào)性,進(jìn)而可求
方法2:對(duì)函數(shù)g(x)=x(lnx+x-x
2)求導(dǎo)可得g'(x)=lnx+1+2x-3x
2.由導(dǎo)數(shù)知識(shí)研究函數(shù)p(x)=lnx+1+2x-3x
2,的單調(diào)性可求函數(shù)g(x)的零點(diǎn),即g'(x
0)=0,從而可得函數(shù)g(x)的單調(diào)性,結(jié)合
g(x)=xlnx+x2-x3=x(lnx+x-x2)≤x(lnx+),可知x→0時(shí),lnx+
<0,則g(x)<0,又g(1)=0可求b的最大值
解答:解:(1)
f′(x)=+x2-2x-2a=
x[2ax2+(1-4a)x-(4a2+2)] |
2ax+1 |
.…(1分)
因?yàn)閤=2為f(x)的極值點(diǎn),所以f'(2)=0.…(2分)
即
-2a=0,解得a=0.…(3分)
又當(dāng)a=0時(shí),f'(x)=x(x-2),從而x=2為f(x)的極值點(diǎn)成立.…(4分)
(2)因?yàn)閒(x)在區(qū)間[3,+∞)上為增函數(shù),
所以
f′(x)=x[2ax2+(1-4a)x-(4a2+2)] |
2ax+1 |
≥0在區(qū)間[3,+∞)上恒成立.…(5分)
①當(dāng)a=0時(shí),f'(x)=x(x-2)≥0在[3,+∞)上恒成立,所以fx)在[3,+∞上為增函數(shù),故a=0符合題意.…(6分)
②當(dāng)a≠0時(shí),由函數(shù)f(x)的定義域可知,必須有2ax+1>0對(duì)x≥3恒成立,故只能a>0,
所以2ax
2+(1-4a)x-(4a
2+2)≥0對(duì)x∈[3,+∞0上恒成立.…(7分)
令g(x)=2ax
2+(1-4a)x-(4a
2+2),其對(duì)稱(chēng)軸為
x=1-,…(8分)
因?yàn)閍>0所以
1-<1,從而g(x)≥0在[3,+∞)上恒成立,只要g(3)≥0即可,
因?yàn)間(3)=-4a
2+6a+1≥0,
解得
≤a≤.…(9分)
因?yàn)閍>0,所以
0<a≤.
綜上所述,a的取值范圍為
[0,].…(10分)
(3)若
a=-時(shí),方程
f(1-x)=+x>0
可化為,
lnx-(1-x)2+(1-x)=.
問(wèn)題轉(zhuǎn)化為b=xlnx-x(1-x)
2+x(1-x)=xlnx+x
2-x
3在(0,+∞)上有解,
即求函數(shù)g(x)=xlnx+x
2-x
3的值域.…(11分)
以下給出兩種求函數(shù)g(x)值域的方法:
方法1:因?yàn)間(x)=x(lnx+x-x
2),令h(x)=lnx+x-x
2(x>0),
則
h′(x)=+1-2x=,…(12分)
所以當(dāng)0<x<1,h
′(x)>0,從而h(x)在(0,1)上為增函數(shù),
當(dāng)x>1,h
′(x)<0,從而h(x')在(1,+∞上為減函數(shù),…(13分)
因此h(x)≤h(1)=0.
而,故b=x•h(x)≤0,
因此當(dāng)x=1時(shí),b取得最大值0.…(14分)
方法2:因?yàn)間(x)=x(lnx+x-x
2),所以g'(x)=lnx+1+2x-3x
2.
設(shè)p(x)=lnx+1+2x-3x
2,則
p′(x)=+2-6x=-.
當(dāng)
0<x<時(shí),p'(x)>0,所以p(x)在
(0,)上單調(diào)遞增;
當(dāng)
x>時(shí),p'(x)<0,所以p(x)在
(,+∞)上單調(diào)遞減;
因?yàn)閜(1)=0,故必有
p()>0,又
p()=-2+1+-<-<0,
因此必存在實(shí)數(shù)
x0∈(,)使得g'(x
0)=0,
∴當(dāng)0<x<x
0時(shí),g′(x)<0,所以g(x)在(0,x
0)上單調(diào)遞減;
當(dāng)x
0<x<1,g′(x)>0,所以,g(x)在(1,+∞)上單調(diào)遞減;
又因?yàn)?span id="6wgacgk" class="MathJye">g(x)=xlnx+
x2-
x3=x(lnx+x-
x2)≤x(lnx+
),
當(dāng)x→0時(shí),lnx+
<0,則g(x)<0,又g(1)=0.
因此當(dāng)x=1時(shí),b取得最大值0.…(14分)
點(diǎn)評(píng):本題主要考查了利用函數(shù)的導(dǎo)數(shù)求解函數(shù)極值的應(yīng)用,及利用函數(shù)的導(dǎo)數(shù)研究函數(shù)的單調(diào)性及函數(shù)的最值的求解,解答本題要求考生具備較強(qiáng)的邏輯推理與運(yùn)算的能力