已知函數(shù)f(x)=2sinxcosx+cos2x(x∈R).

(1)求f(x)的最小正周期和最大值;

(2)若θ為銳角,且f(θ+)=,求tan2θ的值.

 

【答案】

(1) f(x)的最小正周期為=π,最大值為.(2) tan2θ==2.

【解析】

試題分析:利用二倍角公式以及兩角和的正弦函數(shù)化簡(jiǎn)函數(shù)為一個(gè)角的一個(gè)三角函數(shù)的形式,

(Ⅰ)直接利用周期公式求出函數(shù)f (x)的最小正周期,最大值易求.

(Ⅱ)由f(θ+)=可得sin(2θ+)=,從而可得cos2θ=,再注意研究0<2θ<π,進(jìn)而可利用求出sin2θ,進(jìn)而可求出tan2θ=.

(1)f(x)=2sinxcosx+cos2x

=sin2x+cos2x

=(sin2x+cos2x)

=sin(2x+).

∴f(x)的最小正周期為=π,最大值為.…………(6分)

(2)∵f(θ+)=,   ∴sin(2θ+)=.   ∴cos2θ=.

∵θ為銳角,即0<θ<,∴0<2θ<π.

∴sin2θ=.

∴tan2θ==2.…………(13分).

考點(diǎn):倍角公式及兩角和的正弦公式,正切公式,函數(shù)的性質(zhì),同角三角函數(shù)的基本關(guān)系式.

點(diǎn)評(píng):本題主要是利用三角函數(shù)的二倍角公式,兩角和的正弦公式,求解函數(shù)的最小正周期和最值,還考查了利用同角三角函數(shù)式求出其余名函數(shù)值,進(jìn)而得到tan2θ的值.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:設(shè)計(jì)必修一數(shù)學(xué)北師版 北師版 題型:013

已知函數(shù)f(x)=2+log3x(1≤x≤9),則函數(shù)y=[f(x)]2+f(x2)的最大值為

[  ]

A.6

B.13

C.22

D.33

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:學(xué)習(xí)高手必修一數(shù)學(xué)蘇教版 蘇教版 題型:013

已知函數(shù)f(x)=2-x2,g(x)=x.若f(x)·g(x)=min{f(x),g(x)},那么f(x)·g(x)的最大值是

[  ]
A.

1

B.

2

C.

3

D.

4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 人教課標(biāo)高一版(A必修1) 2009-2010學(xué)年 第7期 總163期 人教課標(biāo)高一版 題型:044

已知函數(shù)f(x)=2(log2x)2+2alog2+b,當(dāng)x=時(shí),f(x)有最小值-8,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:湖北省孝感高級(jí)中學(xué)2011-2012學(xué)年高一上學(xué)期期中考試數(shù)學(xué)試題 題型:044

已知函數(shù)f(x)=2|x|-2.

(1)作出函數(shù)f(x)的圖象;

(2)由圖象指出函數(shù)的單調(diào)區(qū)間及單調(diào)性(不用證明);

(3)指出函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:陜西省寶雞市2010屆高三教學(xué)質(zhì)量檢測(cè)(二)數(shù)學(xué)文科試題 題型:013

已知函數(shù)f(x)=()2-log2x,若實(shí)數(shù)x0是方程f(x)=0的解,且0<x1<x0,則f(x1)值的情況是

[  ]
A.

恒為值負(fù)

B.

等于0

C.

恒為正值

D.

不大于0

查看答案和解析>>

同步練習(xí)冊(cè)答案