9.如圖是一個(gè)正方體被一個(gè)平面截去一部分后得到的幾何體的三視圖,則該幾何體的體積是原正方體的體積的(  )
A.$\frac{3}{4}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{3}{8}$

分析 易知該幾何體是底面腰長為2的等腰直角三角形,高為2的直三棱柱,從而解得.

解答 解:由圖可知,
該幾何體是底面腰長為2的等腰直角三角形,高為2的直三棱柱,
其體積是原正方體的$\frac{1}{2}$,
故選C.

點(diǎn)評(píng) 本題考查了三視圖及數(shù)形結(jié)合的思想方法應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)若2x2-ax+1>0在x∈(1,3)上恒成立,求實(shí)數(shù)a的取值集合;
(2)若2x2-ax+1>0在a∈(1,3)上恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,汽車前燈反射鏡與軸截面的交線是拋物線的一部分,燈口所在的圓面與反射鏡的軸垂直,燈泡位于拋物線的焦點(diǎn)F處.已知燈口直徑是24cm,燈深10cm,求燈泡與反射鏡的頂點(diǎn)O的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知拋物線C:y2=2px(p>0)的焦點(diǎn)坐標(biāo)為(1,0),則p=2;若拋物線C上一點(diǎn)A到其準(zhǔn)線的距離與到原點(diǎn)距離相等,則A點(diǎn)到x軸的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)F1,F(xiàn)2為橢圓$\frac{x^2}{9}+\frac{y^2}{5}$=1的兩個(gè)焦點(diǎn),點(diǎn)P在橢圓上,若線段PF1的中點(diǎn)在y軸上,則$\frac{{|{P{F_2}}|}}{{|{P{F_1}}|}}$的值為( 。
A.$\frac{5}{14}$B.$\frac{4}{9}$C.$\frac{5}{13}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1的離心率為$\frac{{\sqrt{2}}}{2}$,焦距為2,右焦點(diǎn)為F,過點(diǎn)F的直線交橢圓于A、B兩點(diǎn).
(1)求橢圓C的方程;
(2)在x軸上是否存在定點(diǎn)M,使得$\overrightarrow{MA}•\overrightarrow{MB}$為定值?若存在,求出定值和定點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且asinB+$\sqrt{3}$acosB=$\sqrt{3}$c.
(Ⅰ)求角A的大。
(Ⅱ)已知函數(shù)f(x)=λcos2(ωx+$\frac{A}{2}$)-3(λ>0,ω>0)的最大值為2,將y=f(x)的圖象的縱坐標(biāo)不變,橫坐標(biāo)伸長到原來的$\frac{3}{2}$倍后便得到函數(shù)y=g(x)的圖象,若函數(shù)y=g(x)的最小正周期為π.當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知定點(diǎn)F(0,1),動(dòng)點(diǎn)M(a,-1)(a∈R),線段FM的中垂線l與直線x=a交于點(diǎn)P.
(1)求動(dòng)點(diǎn)P的軌跡Г的方程;
(2)當(dāng)△PFM為正三角形時(shí),過點(diǎn)P作直線l的垂線,交軌跡Г于P,Q兩點(diǎn),求證:點(diǎn)F在以線段PQ為直徑的圓內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)曲線y=f(x)與曲線y=x2+1(x<0)關(guān)于y=x對(duì)稱,則f(x)的定義域?yàn)椋ā 。?table class="qanwser">A.(0,+∞)B.(1,+∞)C.(-∞,0)D.(-∞,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案