【題目】一個盒子里裝有標(biāo)號1、2、3、4的4張形狀大小完全相同的標(biāo)簽,先后隨機(jī)地選取兩張標(biāo)簽,根據(jù)下列條件,分別求兩張標(biāo)簽上的數(shù)字為相鄰整數(shù)的概率.
(1)標(biāo)簽的選取是無放回的;
(2)標(biāo)簽的選取是有放回的.
【答案】(1);(2).
【解析】
試題分析:(1)記事件“選取的兩張標(biāo)簽上的數(shù)字為相鄰整數(shù)”,列出基本事件的個數(shù),即可利用古典概型的概率計算公式求解概率;(2)列出從張標(biāo)簽中有放回隨機(jī)選取張,構(gòu)成的基本事件的個數(shù),進(jìn)而得到事件所包含的基本事件的個數(shù),利用古典概型及其概率的計算公式,求解概率.
試題解析:記事件“選取的兩張標(biāo)簽上的數(shù)字為相鄰整數(shù)”.
(1)從4張標(biāo)簽中無放回隨機(jī)選取2張,共12個基本事件,分別為,,,,,,,,,,,,
事件包含了其中的6個基本事件:,,,,,,
由古典概型概率計算公式知:,
故無放回地選取兩張標(biāo)簽,其上數(shù)字為相鄰整數(shù)的概率為.
(2)從4張標(biāo)簽中有放回隨機(jī)選取2張,共16個基本事件,分別為:,,,,,,,,,,,,,,,,
事件包含了其中的6個基本事件:,,,,,,
由古典概型概率計算公式知:,
故有放回選取2張標(biāo)簽,其上數(shù)字為相鄰整數(shù)的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的個數(shù)是( )
①圓柱的軸截面是過母線的截面中最大的一個;
②用任意一個平面去截球體得到的截面一定是一個圓面;
③用任意一個平面去截圓錐得到的截面一定是一個圓面.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知圓的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).若直線與圓相交于不同的兩點,.
(1)寫出圓的直角坐標(biāo)方程,并求圓心的坐標(biāo)與半徑;
(2)若弦長,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點為平面直角坐標(biāo)系的原點,極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是(為參數(shù)).
(1)寫出曲線的參數(shù)方程,直線的普通方程;
(2)求曲線上任意一點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù):①,②,③,判斷如下三個命題的真假:
命題甲: 是偶函數(shù);
命題乙: 在上是減函數(shù),在上是增函數(shù);
命題丙: 在是增函數(shù).
則能使命題甲、乙、丙均為真的所有函數(shù)的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中有外形、質(zhì)量完全相同的紅球、黑球、黃球、綠球共12個.從中任取一球,得到紅球的概率是,得到黑球或黃球的概率是,得到黃球或綠球的概率也是.
(1)試分別求得到黑球、黃球、綠球的概率;
(2)從中任取一球,求得到的不是“紅球或綠球”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)滿足,定義數(shù)列, , ,數(shù)列的前項和為, ,且.
(1) 求數(shù)列、的通項公式;
(2)令,求的前項和;
(3)數(shù)列中是否存在三項使成等差數(shù)列,若存在,求出的值,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①直線l的方向向量為=(1,﹣1,2),直線m的方向向量=(2,1,﹣),則l與m垂直;
②直線l的方向向量=(0,1,﹣1),平面α的法向量=(1,﹣1,﹣1),則l⊥α;
③平面α、β的法向量分別為=(0,1,3),=(1,0,2),則α∥β;
④平面α經(jīng)過三點A(1,0,﹣1),B(0,1,0),C(﹣1,2,0),向量=(1,u,t)是平面α的法向量,則u+t=1.
其中真命題的是 .(把你認(rèn)為正確命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),且函數(shù)圖象的對稱中心到對稱軸的最小距離為,當(dāng)時, 的最大值為1.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)將函數(shù)的圖象向右平移個單位長度得到函數(shù)的圖象,若在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com