4.已知點B(3,-2),$\overrightarrow{AB}$=(-2,4),求點A的坐標(biāo).

分析 設(shè)出點A(x,y),用坐標(biāo)表示向量$\overrightarrow{AB}$,利用向量相等列出方程求出點A的坐標(biāo).

解答 解:設(shè)點A(x,y),∵點B(3,-2),
∴$\overrightarrow{AB}$=(3-x,-2-y)=(-2,4),
即$\left\{\begin{array}{l}{3-x=-2}\\{-2-y=4}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=5}\\{y=-6}\end{array}\right.$,
∴點A的坐標(biāo)為A(5,-6).

點評 本題考查了利用向量的坐標(biāo)表示以及列方程的方法求點的坐標(biāo)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.某警官處理一起撞人肇事逃逸案件,涉案現(xiàn)場的A、B、C三名嫌疑人被當(dāng)場詢問.該警官認(rèn)為.說實話的不是肇事者,說謊話的肯定就是肇事者.結(jié)果也證明警官的這個想法是正確的.警官先問A:“你是怎樣撞到人后逃逸的?”A回答了警官的問題:“嘰里呱啦,嘰里呱啦…”A講的是某地的方言,警官根本聽不懂他說的是什么.警官又問B和C:“剛才A是怎樣回答我的問題的?”B說:“A說,他不是肇事者.”C說:“A承認(rèn)自己就是肇事者.”B和C說的話警官是能聽懂的.聽了B和C的話之后,這位警官馬上斷定:C是肇事者.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.直線y=x-2被圓(x-2)2+(y+1)2=1所截弦長為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知集合M={x||x+1|≤1},P={y|y=4x-a•2x-1+1,x∈M}都是全集U=R的子集,其中$\frac{3}{4}$<a≤1,求∁u(M∪P)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,已知AB為⊙O的直徑,CD是弦,AB⊥CD于點E,OF⊥AC于點F.
(1)求證:OF∥BC;
(2)若EB=5cm,CD=10$\sqrt{3}$cm,求OE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.向量$\overrightarrow{a}$,$\overrightarrow$的坐標(biāo)分別為(2,-1),(-1,3),則$\overrightarrow{a}$+$\overrightarrow$的坐標(biāo)為(1,2),2$\overrightarrow{a}$+3$\overrightarrow$的坐標(biāo)為(1,7).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知{an}是一個首項為a1,公差為d的等差數(shù)列.試求:Sn=a1${C}_{n}^{0}$+a2${C}_{n}^{1}$+…+an+1${C}_{n}^{n}$(n≥1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{1}{2}$sin2x+cosx,x∈R.
(1)證明:f(x)的最小正周期為2π;
(2)若關(guān)于x的方程f(x)-a=0在區(qū)間[$\frac{π}{6}$,π]上有兩個不同的實數(shù)解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系中,已知點M(0,-1),N(0,1),動點P滿足PM=$\sqrt{2}$PN.
(1)求點P的軌跡C1的方程,并說明是什么曲線
(2)二次函數(shù)f(x)=x2+2x-3的圖象與兩坐標(biāo)軸交于三點,過這三點的圓記為C2,求證C1、C2有兩個公共點,并求出這兩個公共點間距離.

查看答案和解析>>

同步練習(xí)冊答案