20.設(shè)M為△ABC內(nèi)一點,且$\overrightarrow{AM}=\frac{1}{4}\overrightarrow{AB}+\frac{1}{5}\overrightarrow{AC}$,則△ABM與△ABC的面積之比為( 。
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{4}{9}$D.$\frac{5}{9}$

分析 作出圖形,則兩三角形的面積比等于兩三角形高的比,轉(zhuǎn)化為$\frac{AE}{AC}$

解答 解:如圖所示,
∵點M是△ABC所在平面內(nèi)一點,且滿足$\overrightarrow{AM}=\frac{1}{4}\overrightarrow{AB}+\frac{1}{5}\overrightarrow{AC}$,
以AD,AE為鄰邊作平行四邊形ADME,延長EM交BC與F,AE=$\frac{1}{5}$AC,
則EF∥AB,$\frac{{S}_{△ABC}}{{S}_{△ABC}}=\frac{AE}{AC}=\frac{1}{5}$.
故選:A.

點評 本題考查了平面向量線性運算的幾何意義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=ax-$\frac{a}{x}$-2lnx.
(Ⅰ)若f(x)在x=2時有極值,求實數(shù)a的值和f(x)的極大值;
(Ⅱ)若f(x)在定義域上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=xln x,g(x)=(-x2+ax-3)ex(a為實數(shù)).
(1)當(dāng)a=5時,求函數(shù)y=g(x)在x=1處的切線方程;
(2)求f(x)在區(qū)間[t,t+2](t>0)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若一個正三棱錐的正(主)視圖如圖所示,則其體積等于( 。
A.$\frac{{\sqrt{3}}}{6}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{2\sqrt{3}}}{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知點A(4,8)是拋物線C:y2=2px與直線l:y=k(x+4)的一個交點,則拋物線的焦點到直線l的距離是( 。
A.$\sqrt{2}$B.$2\sqrt{2}$C.$3\sqrt{2}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}滿足a1=1,an+1=2an+1.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)證明:$\frac{n}{2}$-$\frac{1}{3}$<$\frac{{a}_{1}}{{a}_{2}}$+$\frac{{a}_{2}}{{a}_{3}}$+…+$\frac{{a}_{n}}{{a}_{n+1}}$≤$\frac{n}{2}$-$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知二次函數(shù)f(x)=ax2+bx+1和函數(shù)g(x)=$\frac{bx-1}{{a}^{2}x+2b}$,
(1)若f(x)為偶函數(shù),試判斷g(x)的奇偶性;
(2)若方程g(x)=x有兩個不等的實根x1,x2(x2<x2),則
①試判斷函數(shù)f(x)在區(qū)間(-1,1)上是否具有單調(diào)性,并說明理由;
②若方程f(x)=0的兩實根為x3,x4(x3<x4)求使x1<x2<x3<x4成立的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)函數(shù)f(x)=$\frac{x}{x+2}$(x>0),觀察:
f1(x)=f(x)=$\frac{x}{x+2}$(x>0),f2(x)=f(f1(x))=$\frac{x}{3x+4}$,f3(x)=f(f2(x))=$\frac{x}{7x+8}$,f4(x)=f(f3(x))=$\frac{x}{15x+16}$…
根據(jù)以上事實,由歸納推理可得:當(dāng)n∈N+時,fn(1)=$\frac{1}{{{2^{n+1}}-1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{lnx}{1-x}$,ϕ(x)=(x-1)2•f′(x)
(1)若函數(shù)ϕ(x)在區(qū)間(3m,m+$\frac{1}{2}$)上單調(diào)遞減,求實數(shù)m的取值范圍;
(2)若對任意的x∈(0,1),恒有(1+x)•f(x)+2a<0(a>0),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案