19.A,B是△ABC的兩個內(nèi)角,p:sinAsinB<cosAcosB;q:△ABC是鈍角三角形.則p是q成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 由兩角差的余弦公式,結(jié)合充分必要條件的定義判斷即可.

解答 解:在△ABC中,由sinAsinB<cosAcosB,
得cos(A+B)>0,則cosC<0,∠C為鈍角,
則△ABC是鈍角三角形,充分性成立,
反之,不成立,
故選:A.

點評 本題考查了充分必要條件,考查兩角差的余弦公式,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=sin2x-$\frac{{\sqrt{3}}}{2}$sin2x.
(1)求函數(shù)f(x)的解析式及其最小正周期;
(2)當(dāng)x∈[0,$\frac{π}{3}$]時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l:$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),曲線C1:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$  (θ為參數(shù)).設(shè)l與C1相交于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)Sn是數(shù)列{an}的前n項和,且a1=1,an+1=-SnSn+1,則使$\frac{n{{S}_{n}}^{2}}{1+10{{S}_{n}}^{2}}$取得最大值時n的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知直線l1:x+2ay-1=0,l2:(a+1)x-ay=0,若l1∥l2,則實數(shù)a的值為( 。
A.$-\frac{3}{2}$B.0C.$-\frac{3}{2}$或0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線C:$\frac{x^2}{9}$-$\frac{y^2}{16}$=1的左右焦點分別為F1,F(xiàn)2,P為C的右支上一點,且|PF2|=$\frac{3}{5}$|F1F2|,則△PF1F2的面積等于( 。
A.8B.$8\sqrt{7}$C.$8\sqrt{14}$D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在直角坐標(biāo)系中,不等式y(tǒng)2-x2≤0表示的平面區(qū)域是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.定義在[-3,3]上的增函數(shù)f(x)滿足f(-x)=-f(x),且f(m+1)+f(2m-1)>0,求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)點P為等邊△ABC所在平面內(nèi)的一點,滿足$\overrightarrow{CP}=\overrightarrow{CB}+2\overrightarrow{CA}$,若AB=2,則$\overrightarrow{PA}•\overrightarrow{PB}$的值是12.

查看答案和解析>>

同步練習(xí)冊答案