分析 利用平面向量的三角形法則以及數(shù)量積的運(yùn)算,將$\overrightarrow{PA}•\overrightarrow{PB}$用等邊三角形對(duì)應(yīng)邊的向量表示,展開計(jì)算數(shù)量積即可.
解答 解:由題意,如圖,△ABC為等邊三角形,$\overrightarrow{CP}=\overrightarrow{CB}+2\overrightarrow{CA}$,AB=2,
所以$\overrightarrow{PA}•\overrightarrow{PB}$=$(\overrightarrow{PD}+\overrightarrow{DA})(\overrightarrow{PC}+\overrightarrow{CB})$=$(\overrightarrow{BC}+\overrightarrow{AC})$$(\overrightarrow{BC}+2\overrightarrow{AC}+\overrightarrow{CB})$
=$(\overrightarrow{BC}+\overrightarrow{AC})•2\overrightarrow{AC}=2\overrightarrow{BC}•\overrightarrow{AC}+2{\overrightarrow{AC}}^{2}$
=$2×2×2×\frac{1}{2}+2×{2}^{2}$=12;
故答案為:12.
點(diǎn)評(píng) 本題考查了平面向量的三角形法則以及數(shù)量積的運(yùn)算;關(guān)鍵是正確將所求轉(zhuǎn)化為等邊三角形邊對(duì)應(yīng)的向量為基底,進(jìn)行計(jì)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[{\frac{3}{2},4}]$ | B. | $[{2,\frac{9}{2}}]$ | C. | [-11,-1] | D. | [-3,7] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com