已知數(shù)列{an}的前n項(xiàng)和Sn=n2-48n+7,求數(shù)列{an}的通項(xiàng)公式.
考點(diǎn):數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:利用遞推式即可得出.
解答: 解:∵Sn=n2-48n+7,
∴當(dāng)n=1時(shí),a1=S1=-40;
當(dāng)n≥2時(shí),an=Sn-Sn-1=n2-48n+7-[(n-1)2-48(n-1)+7]=2n-49.
an=
-40,n=1
2n-49,n≥2
點(diǎn)評(píng):本題考查了遞推式的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖尺寸如圖,則該幾何體的表面積為( 。
A、4+8
3
B、20
C、4+4
3
D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心坐標(biāo)為(1,2),直線l:x+y-1=0與圓C相交于M、N兩點(diǎn),|MN|=2.
(1)求圓C的方程;
(2)若t≠1,過點(diǎn)A(t,0)作圓C的切線,切點(diǎn)為B,記d1=|AB|,點(diǎn)A到直線l的距離為d2,求
d1-1
d2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,以兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)為頂點(diǎn)的四邊形是一個(gè)面積為8的正方形,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果cos2014φ-sin2014φ>2014(sin2014φ-cos2014φ),φ∈[0,2π),則φ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知⊙C的一條直徑的端點(diǎn)分別是M(-2,0),N(0,2)
(Ⅰ)求⊙C的方程;
(Ⅱ)過點(diǎn)P(1,-1)作⊙C的兩條切線,切點(diǎn)分別是A,B,求
PA
PB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

動(dòng)圓M經(jīng)過雙曲線x2-
y2
3
=1的左焦點(diǎn)且與直線x=2相切,則圓心M的軌跡方程是(  )
A、y2=8x
B、y2=-8x
C、y2=4x
D、y2=-4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=3,S2=
9
2
,2Sn+2+Sn=3Sn+1
(1)證明:數(shù)列{an}是等比數(shù)列;
(2)若對(duì)任意n∈N*,不等式
3k
6-Sn
≥n恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-3|+|x+4|.
(1)求f(x)≥f(4)的解集;
(2)設(shè)函數(shù)g(x)=k(x-3),k∈R,若f(x)>g(x)對(duì)任意的x∈R都成立,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案