如圖,過圓O外一點P作該圓的兩條割線PAB和PCD,分別交圓 O于點A,B,C,D弦AD和BC交于Q點,割線PEF經(jīng)過Q點交圓 O于點E、F,點M在EF上,且:
(I)求證:PA·PB=PM·PQ;  (II)求證:.

(I)見解析;  (II)見解析.

解析試題分析:(I)證明A,Q,M,B四點共圓,可得結(jié)論; (II)先證明,再證明,可得,所以.
試題解析:(Ⅰ)∵∠BAD=∠BMF,所以A,Q,M,B四點共圓,     3分
所以.      5分
(Ⅱ)∵ , ∴ ,
 ,  所以,     7分
,則,      8分
,∴,
,所以.       10分
考點:1、幾何證明.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,內(nèi)接于上,,于點E,點F在DA的延長線上,,求證:

(1)的切線;
(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在△ABC中,CD是∠ACB的平分線,△ACD的外接圓交于BC于點E,AB=2AC.

(Ⅰ)求證:BE=2AD;
(Ⅱ)當(dāng)AC=1,EC=2時,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,的直徑,弦垂直,并與相交于點,點為弦上異于點的任意一點,連結(jié)、并延長交于點.
⑴ 求證:、、、四點共圓;
⑵ 求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,△內(nèi)接于⊙,,直線切⊙于點,弦,相交于點.

(Ⅰ)求證:△≌△
(Ⅱ)若,求長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是圓的內(nèi)接四邊形,,過點的圓的切線與的延長線交于點,證明:

(Ⅰ)
(II)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,的內(nèi)心為分別是的中點,,內(nèi)切圓分別與邊相切于;證明:三線共點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知PA與⊙O相切,A為切點,過點P的割線交圓于B、C兩點,弦CD∥AP,AD、BC相交于點E,F(xiàn)為CE上一點,且DE2 = EF·EC.

(Ⅰ)求證:CE·EB = EF·EP;
(Ⅱ)若CE:BE = 3:2,DE = 3,EF = 2,求PA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分10分)
如下圖,AB、CD是圓的兩條平行弦,BE//AC,BECDE、交圓于F,過A點的切線交DC的延長線于P,PC=ED=1,PA=2.

(I)求AC的長;
(II)求證:BEEF

查看答案和解析>>

同步練習(xí)冊答案