【題目】如圖,在四邊形ABCD中,AD∥BC,∠BAD=90°,AB=2,BC=4,AD=6,E是AD上的點,AE=AD,P 為BE的中點,將△ABE沿BE折起到△A1BE的位置,使得A1C=4,如圖所示.求二面角BA1PD的余弦值.
【答案】-.
【解析】
先確定空間直角坐標(biāo)系,再求解平面A1PD的法向量,平面A1PB的法向量,再利用向量的夾角公式求解即可.
解:如圖,以P為坐標(biāo)原點,PB所在直線為x軸,PC所在直線為y軸,過P作平面BCDE的垂線為z軸,建立空間直角坐標(biāo)系,
則A1(-1,0,),P(0,0,0),D(-4,2,0),
∴=(-1,0,),=(-4,2,0),
設(shè)平面A1PD的法向量為=(x,y,z),
則即
取x=,得=(,2,1).
易知平面A1PB的一個法向量=(0,1,0),
則cos〈,〉==.
由圖可知二面角BA1PD是鈍角,
∴二面角BA1PD的余弦值為-.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)若函數(shù)在處取得極大值,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:x+y-6=0,過直線上一點P作圓x2+y2=4的切線,切點分別為A,B,則四邊形PAOB面積的最小值為______,此時四邊形PAOB外接圓的方程為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃在迎春節(jié)聯(lián)歡會中設(shè)一項抽獎活動:在一個不透明的口袋中裝入外形一樣號
碼分別為1,2,3,…,10的十個小球。活動者一次從中摸出三個小球,三球號碼有且僅有兩個連號的為三等獎,獎金30元;三球號碼都連號為二等獎,獎金60元;三球號碼分別為1,5,10為一等獎,獎金240元;其余情況無獎金。
(1)求員工甲抽獎一次所得獎金ξ的分布列與期望;
(2)員工乙幸運地先后獲得四次抽獎機(jī)會,他得獎次數(shù)的方差是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,,過點作交于點,以為折痕把折起,當(dāng)幾何體的的體積最大時,則下列命題中正確的個數(shù)是( )
①
②∥平面
③與平面所成的角等于與平面所成的角
④與所成的角等于與所成的角
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),給出下列四個命題:
①的最小正周期為
②的圖象關(guān)于直線對稱
③在區(qū)間上單調(diào)遞增
④的值域為
⑤在區(qū)間上有6個零點
其中所有正確的編號是( )
A.②④B.①④⑤C.③④D.②③⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《厲害了,我的國》是2018年在我國各影院上映的一部非;鸬碾娪凹o(jì)錄片,該部影片主要講述了我國近幾年的發(fā)展現(xiàn)狀和成就,影片通過講述中國故事,刻畫中國面貌,弘揚了中國精神,引起了國民的高度關(guān)注,上映僅半個月影片票房就突破了3億元,刷新了我國紀(jì)錄片的票房紀(jì)錄,某市一電影院為了解該影院觀看《厲害了,我的國》的觀眾的年齡構(gòu)成情況,隨機(jī)抽取了40名觀眾數(shù)據(jù)統(tǒng)計如表:
年齡/歲 | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) | [60,70) | [70,80) |
人數(shù) | 6 | 8 | 12 | 6 | 4 | 2 | 2 |
(1)求所調(diào)查的40名觀眾年齡的平均數(shù)和中位數(shù);
(2)該電影院決定采用抽獎方式來提升觀影人數(shù),將《厲害了,我的國》的電影票票價提高20元/張,并允許購買電影票的觀眾抽獎3次,中獎1次、2次、3次分別獎現(xiàn)金20元、30元、60元,設(shè)觀眾每次中獎的概率均為,則觀眾在3次抽獎中所獲得的獎金總額的數(shù)學(xué)期望是多少元(結(jié)果保留整數(shù))?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示為一種魔豆吊燈,圖2為該吊燈的框架結(jié)構(gòu)圖,由正六棱錐和構(gòu)成,兩個棱錐的側(cè)棱長均相等,且棱錐底面外接圓的直徑為,底面中心為,通過連接線及吸盤固定在天花板上,使棱錐的底面呈水平狀態(tài),下頂點與天花板的距離為,所有的連接線都用特殊的金屬條制成,設(shè)金屬條的總長為y.
(1)設(shè)∠O1AO =(rad),將y表示成θ的函數(shù)關(guān)系式,并寫出θ的范圍;
(2)請你設(shè)計θ,當(dāng)角θ正弦值的大小是多少時,金屬條總長y最小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com