【題目】已知函數(shù),給出下列四個命題:
①的最小正周期為
②的圖象關(guān)于直線對稱
③在區(qū)間上單調(diào)遞增
④的值域為
⑤在區(qū)間上有6個零點
其中所有正確的編號是( )
A.②④B.①④⑤C.③④D.②③⑤
【答案】C
【解析】
化簡函數(shù),通過,判斷①;通過,判斷的圖象不關(guān)于直線對稱,判斷②;在區(qū)間,上,,化簡函數(shù)的解析式,判斷單調(diào)性單調(diào)遞增,判斷③;當時,推出,求出最值,當時,求出最值判斷④;當時,,在區(qū)間,上有無數(shù)個零點,判斷⑤.
函數(shù),,
∴,故函數(shù)的最小正周期不是,故①錯誤.
由于,,∴,故的圖象不關(guān)于直線對稱,故排除②.
在區(qū)間上,,,單調(diào)遞增,故③正確.
當時,,
故它的最大值為2,最小值為;當時,
,
綜合可得,函數(shù)的最大值為2,最小值為,故④正確.
當時,,在區(qū)間上有無數(shù)個零點,故⑤錯誤.
故選:C.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(,是自然對數(shù)的底數(shù))
(Ⅰ) 設(shè)(其中是的導數(shù)),求的極小值;
(Ⅱ) 若對,都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙三個車床加工的零件分別為350個,700個,1050個,現(xiàn)用分層抽樣的方法隨機抽取6個零件進行檢驗.
(1)從抽取的6個零件中任意取出2個,已知這兩個零件都不是甲車床加工的,求其中至少有一個是乙車床加工的零件;
(2)從抽取的6個零件中任意取出3個,記其中是乙車床加工的件數(shù)為X,求X的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠BAD=90°,AB=2,BC=4,AD=6,E是AD上的點,AE=AD,P 為BE的中點,將△ABE沿BE折起到△A1BE的位置,使得A1C=4,如圖所示.求二面角BA1PD的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)若方程2[f(x)]2﹣5tf(x)+3t2=0恰有4個不同的實根,則實數(shù)t的取值范圍為(參考數(shù)據(jù):ln2≈0.6931)( )
A.(,)
B.(,)
C.(,2﹣2ln2)∪(,1)
D.(,2﹣1n2)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a>0,函數(shù)f(x)=|2x+2|+|x﹣a|的最小值為2.
(1)求實數(shù)a的值,并作出y=f(x)的圖象;
(2)當m>0,n>0,且m+n=2時,m2+n2≥f(x)恒成立,求實數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,B,C分別是海岸線上的兩個城市,兩城市間由筆直的海濱公路相連,B,C之間的距離為100km,海島A在城市B的正東方50處.從海島A到城市C,先乘船按北偏西θ角(,其中銳角的正切值為)航行到海岸公路P處登陸,再換乘汽車到城市C.已知船速為25km/h,車速為75km/h.
(1)試建立由A經(jīng)P到C所用時間與的函數(shù)解析式;
(2)試確定登陸點P的位置,使所用時間最少,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年中秋節(jié)到來之際,某超市為了解中秋節(jié)期間月餅的銷售量,對其所在銷售范圍內(nèi)的1000名消費者在中秋節(jié)期間的月餅購買量單位:進行了問卷調(diào)查,得到如下頻率分布直方圖:
求頻率分布直方圖中a的值;
以頻率作為概率,試求消費者月餅購買量在的概率;
已知該超市所在銷售范圍內(nèi)有20萬人,并且該超市每年的銷售份額約占該市場總量的,請根據(jù)這1000名消費者的人均月餅購買量估計該超市應(yīng)準備多少噸月餅恰好能滿足市場需求頻率分布直方圖中同一組的數(shù)據(jù)用該組區(qū)間的中點值作代表?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com