【題目】已知曲線
若,過點的直線交曲線于兩點,且,求直線的方程;
若曲線表示圓,且直線與圓交于兩點,是否存在實數(shù),使得以為直徑的圓過原點,若存在,求出實數(shù)的值;若不存在,請說明理由.
【答案】(1)或 (即)(2)
【解析】試題分析:(1)根據(jù)垂徑定理求出圓心到直線距離為1 ,再根據(jù)點到直線距離公式求直線的斜率,即得直線方程,(2)先根據(jù)曲線表示圓得實數(shù)取值范圍為.再根據(jù)以為直徑的圓過原點得,利用向量數(shù)量積可得,根據(jù)直線方程進(jìn)一步化簡得,最后聯(lián)立直線方程與圓方程,結(jié)合韋達(dá)定理化簡得.
試題解析:解(1) 當(dāng)時, 曲線C是以為圓心,2為半徑的圓,
若直線的斜率不存在,顯然不符,
故可直線為: ,即.
由題意知,圓心到直線的距離等于,
即:
解得或.故的方程或 (即)
(2)由曲線C表示圓,即,
所以圓心C(1,2),半徑,則必有.
假設(shè)存在實數(shù)使得以為直徑的圓過原點,則,設(shè),
則,由得
,即,又,
故,從而
, 故存在實數(shù)使得以為直徑的圓過原點, .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究冬季晝夜溫差大小對某反季節(jié)大豆新品種發(fā)芽率的影響,某農(nóng)科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如下資料:
組號 | 1 | 2 | 3 | 4 | 5 |
溫差() | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗.
(1)若選取的是第1組與第5組的兩組數(shù)據(jù),請根據(jù)第2組至第4組的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為自然對數(shù)的底數(shù).
(1)討論的單調(diào)性;
(2)若函數(shù)的圖象與直線交于兩點,線段中點的橫坐標(biāo)為,證明: 為函數(shù)的導(dǎo)函數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若存在極值點,且,其中,求證: ;
(Ⅲ)設(shè),函數(shù),求證: 在區(qū)間上最大值不小于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,橢圓和拋物線交于兩點,且直線恰好通過橢圓的右焦點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)經(jīng)過橢圓右焦點的直線和橢圓交于兩點,點在橢圓上,且,
其中為坐標(biāo)原點,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程.
已知曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系原點為極點,軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)若直線的極坐標(biāo)方程為,求直線被曲線截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在上有最大值1和最小值0,設(shè).
(1)求的值;
(2)若不等式在上有解,求實數(shù)的取值范圍;
(3)若方程 (為自然對數(shù)的底數(shù))有三個不同的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有10道題,其中6道甲類題,4道乙類題,小明同學(xué)從中任取3道題解答.
(Ⅰ)求小明同學(xué)至少取到1道乙類題的概率;
(Ⅱ)已知所取的3道題中有2道甲類題,1道乙類題.若小明同學(xué)答對每道甲類題的概率都是,答對每道乙類題的概率都是,且各題答對與否相互獨立.求小明同學(xué)至少答對2道題的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,△是等邊三角形,△是等腰直角三角形,,平面⊥平面,⊥平面,點為的中點,連接.
(1)求證:平面;
(2)若,求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com