【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)設(shè),當(dāng)時(shí),對(duì)任意,存在,使,求實(shí)數(shù)的取值范圍.

【答案】(1)見解析.

(2).

【解析】分析:(1)先求一階導(dǎo)函數(shù)的根,求解的解集,寫出單調(diào)區(qū)間。

(2)當(dāng)時(shí),求出的最小值,存在,使的最小值,

再分離變量構(gòu)建函數(shù),解。

詳解:(1)的定義域?yàn)?/span>,

,

,得.

當(dāng),則,由,由,

函數(shù)上單調(diào)遞減,在上單調(diào)遞增.

當(dāng),則,由

,

函數(shù)上單調(diào)遞減,在上單調(diào)遞增.

當(dāng),則,可得,

此時(shí)函數(shù)上單調(diào)遞增.

當(dāng)時(shí),則,由,

,

函數(shù)上單調(diào)遞減,在上單調(diào)遞增.

(2)當(dāng)時(shí),由(1)得函數(shù)上單調(diào)遞減,

上單調(diào)遞增,

從而上的最小值為.

對(duì)任意,存在,使,

即存在,函數(shù)值不超過在區(qū)間上的最小值.

,.

,則當(dāng)時(shí),.

,當(dāng),顯然有,

當(dāng),

在區(qū)間上單調(diào)遞減,得,

從而的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)若上恒成立,求實(shí)數(shù)的取值范圍;

(2)證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩動(dòng)圓),把它們的公共點(diǎn)的軌跡記為曲線,若曲線軸的正半軸的交點(diǎn)為,且曲線上的相異兩點(diǎn)滿足:.

1)求曲線的軌跡方程;

2)證明直線恒經(jīng)過一定點(diǎn),并求此定點(diǎn)的坐標(biāo);

3)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個(gè)零點(diǎn), ,則下面說法正確的是( )

A. B. C. D. 有極小值點(diǎn),且

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記不等式組 ,表示的平面區(qū)域?yàn)?/span> .下面給出的四個(gè)命題: ; ; 其中真命題的是:

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象過原點(diǎn),且在原點(diǎn)處的切線與直線垂直.為自然對(duì)數(shù)的底數(shù)).

1)討論的單調(diào)性;

2)若對(duì)任意的,總有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若是定義域上的增函數(shù),求的取值范圍;

2)設(shè),分別為的極大值和極小值,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線有如下光學(xué)性質(zhì):由其焦點(diǎn)射出的光線經(jīng)拋物線反射后,沿平行于拋物線對(duì)稱軸的方向射出.現(xiàn)有拋物線,如圖一平行于軸的光線射向拋物線,經(jīng)兩次反射后沿平行軸方向射出,若兩平行光線間的最小距離為4,則該拋物線的方程為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程和的直角坐標(biāo)方程;

2)已知曲線的極坐標(biāo)方程為,點(diǎn)是曲線的交點(diǎn),點(diǎn)是曲線的交點(diǎn),、均異于原點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案