【題目】為了宣傳今年10月在某市舉行的第十屆中國(guó)藝術(shù)節(jié),十藝節(jié)籌委會(huì)舉辦了十藝節(jié)知識(shí)有獎(jiǎng)問答活動(dòng),隨機(jī)對(duì)市民1565歲的人群抽樣人,回答問題統(tǒng)計(jì)結(jié)果如下圖表所示:

組號(hào)

分組

回答正確的人數(shù)

回答正確的人數(shù)占本組的頻率

頻率分布直方圖

1

5

0.5

2

0.9

3

27

4

9

0.36

5

3

0.2

1)分別求出的值;

2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,十藝節(jié)籌委會(huì)決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.

【答案】118;0.92

【解析】

1)根據(jù)頻率表可得第1組人數(shù)為,再結(jié)合頻率分布直方圖,進(jìn)而可求出的值

2)根據(jù)分層抽樣算出各組抽取的人數(shù),列舉出所有的基本事件,再求出所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的情況,利用古典概型的概率計(jì)算公式即可求解.

1)由頻率表中第1組數(shù)據(jù)可知,第1組總?cè)藬?shù)為,

再結(jié)合頻率分布直方圖可知,

,.

2)第2,3,4組中回答正確的共有54.

∴利用分層抽樣在54人中抽取6人,

每組分別抽取的人數(shù)為:第2組:人,

3組:人,

4組:.

設(shè)第2組的2人為,第3組的3人為,

4組的1人為,則從6人中抽2人所有可能的結(jié)果有:

,,,,,,

,,,,,,

,,,共15個(gè)基本事件,

其中第2組至少有1人被抽中的有,,,

,,,,9個(gè)基本事件.

∴第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐PABCD中,底面ABCD是邊長(zhǎng)為4的正方形,△PAD是一個(gè)正三角形,若平面PAD⊥平面ABCD,則該四棱錐的外接球的表面積為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為(),將曲線向左平移2個(gè)單位長(zhǎng)度得到曲線.

1)求曲線的普通方程和極坐標(biāo)方程;

2)設(shè)直線與曲線交于兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)成就的杰出代表.其中《方田》章給出計(jì)算弧田面積的經(jīng)驗(yàn)公式為:.弧田(如圖1陰影部分)由圓弧和其所對(duì)弦圍成,弦”指圓弧所對(duì)弦長(zhǎng),“矢”等于半徑長(zhǎng)與圓心到弦的距離之差.類比弧田面積公式得到球缺(如圖 2)近似體積公式:圓面積.球缺是指一個(gè)球被平面截下的一部分,廈門嘉庚體育館近似球缺結(jié)構(gòu)(如圖3),若該體育館占地面積約為18000,建筑容積約為340000,估計(jì)體育館建筑高度(單位:)所在區(qū)間為( )

參考數(shù)據(jù): ,,

,.

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱錐的側(cè)面底面,底面是直角梯形,且, , 中點(diǎn).

(1)求證: 平面;

(2)若,求直線與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】牛頓迭代法(Newton's method)又稱牛頓拉夫遜方法(NewtonRaphsonmethod),是牛頓在17世紀(jì)提出的一種近似求方程根的方法.如圖,設(shè)的根,選取作為初始近似值,過點(diǎn)作曲線的切線軸的交點(diǎn)的橫坐標(biāo),稱的一次近似值,過點(diǎn)作曲線的切線,則該切線與軸的交點(diǎn)的橫坐標(biāo)為,稱的二次近似值.重復(fù)以上過程,直到的近似值足夠小,即把作為的近似解.設(shè)構(gòu)成數(shù)列.對(duì)于下列結(jié)論:

;

;

;

.

其中正確結(jié)論的序號(hào)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),新能源汽車技術(shù)不斷推陳出新,新產(chǎn)品不斷涌現(xiàn),在汽車市場(chǎng)上影響力不斷增大.動(dòng)力蓄電池技術(shù)作為新能源汽車的核心技術(shù),它的不斷成熟也是推動(dòng)新能源汽車發(fā)展的主要?jiǎng)恿?/span>.假定現(xiàn)在市售的某款新能源汽車上,車載動(dòng)力蓄電池充放電循環(huán)次數(shù)達(dá)到2000次的概率為85%,充放電循環(huán)次數(shù)達(dá)到2500次的概率為35%.若某用戶的自用新能源汽車已經(jīng)經(jīng)過了2000次充電,那么他的車能夠充電2500次的概率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)k為常數(shù),).

1)在下列條件中選擇一個(gè)________使數(shù)列是等比數(shù)列,說明理由;

①數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列;

②數(shù)列是首項(xiàng)為4,公差為2的等差數(shù)列;

③數(shù)列是首項(xiàng)為2,公差為2的等差數(shù)列的前n項(xiàng)和構(gòu)成的數(shù)列.

2)在(1)的條件下,當(dāng)時(shí),設(shè),求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】大約在20世紀(jì)30年代,世界上許多國(guó)家都流傳著這樣一個(gè)題目:任取一個(gè)正整數(shù),如果它是偶數(shù),則除以2;如果它是奇數(shù),則將它乘以31,這樣反復(fù)運(yùn)算,最后結(jié)果必然是1.這個(gè)題目在東方被稱為角谷猜想,世界一流的大數(shù)學(xué)家都被其卷入其中,用盡了各種方法,甚至動(dòng)用了最先進(jìn)的電子計(jì)算機(jī),驗(yàn)算到對(duì)700億以內(nèi)的自然數(shù)上述結(jié)論均為正確的,但卻給不出一般性的證明.例如取,則要想算出結(jié)果1,共需要經(jīng)過的運(yùn)算步數(shù)是(

A.9B.10C.11D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案