【題目】大約在20世紀(jì)30年代,世界上許多國家都流傳著這樣一個題目:任取一個正整數(shù),如果它是偶數(shù),則除以2;如果它是奇數(shù),則將它乘以3加1,這樣反復(fù)運算,最后結(jié)果必然是1.這個題目在東方被稱為“角谷猜想”,世界一流的大數(shù)學(xué)家都被其卷入其中,用盡了各種方法,甚至動用了最先進(jìn)的電子計算機,驗算到對700億以內(nèi)的自然數(shù)上述結(jié)論均為正確的,但卻給不出一般性的證明.例如取,則要想算出結(jié)果1,共需要經(jīng)過的運算步數(shù)是( )
A.9B.10C.11D.12
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差不為零的等差數(shù)列中,,且,,成等比數(shù)列,
(1)求數(shù)列的通項公式;
(2)數(shù)列滿足,數(shù)列的前n項和為,若不等式對一切恒成立,求的取值范圍.
(3)設(shè)數(shù)列的前n項和為,求證:對任意正整數(shù)n,都有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘雅典學(xué)派算學(xué)家歐道克薩斯提出了“黃金分割”的理論,利用尺規(guī)作圖可畫出己知線段的黃金分割點,具體方法如下:(l)取線段AB=2,過點B作AB的垂線,并用圓規(guī)在垂線上截取BC=AB,連接AC;(2)以C為圓心,BC為半徑畫弧,交AC于點D;(3)以A為圓心,以AD為半徑畫弧,交AB于點E.則點E即為線段AB的黃金分割點.若在線段AB上隨機取一點F,則使得BE≤AF≤AE的概率約為( 。▍⒖紨(shù)據(jù):2.236)
A. 0.236B. 0.382C. 0.472D. 0.618
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點、點及拋物線.
(1)若直線過點及拋物線上一點,當(dāng)最大時求直線的方程;
(2)軸上是否存在點,使得過點的任一條直線與拋物線交于點,且點到直線的距離相等?若存在,求出點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】陸良縣2017屆和2018屆都取得了輝煌的成績,兩年均有人考入清華大學(xué)或北京大學(xué),600分以上的考生進(jìn)一步創(chuàng)歷史新高.對此北辰中學(xué)某學(xué)習(xí)興趣小組對2019屆20名學(xué)生的數(shù)學(xué)成績進(jìn)行了調(diào)查,所得分?jǐn)?shù)分組為,,,,,據(jù)此制作的頻率分布直方圖如圖所示.
(1)求出直方圖中的值;
(2)利用直方圖估計2019屆20名學(xué)生分?jǐn)?shù)的眾數(shù)和中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)若從分?jǐn)?shù)在的學(xué)生中,隨機的抽取2名學(xué)生進(jìn)行輔導(dǎo),求抽到的學(xué)生來自同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P一ABCD中,AB=AD=2BC=2,BC∥AD,AB⊥AD,△PBD為正三角形.且PA=2.
(1)證明:平面PAB⊥平面PBC;
(2)若點P到底面ABCD的距離為2,E是線段PD上一點,且PB∥平面ACE,求四面體A-CDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著醫(yī)院對看病掛號的改革,網(wǎng)上預(yù)約成為了當(dāng)前最熱門的就診方式,這解決了看病期間病人插隊以及醫(yī)生先治療熟悉病人等諸多問題;某醫(yī)院研究人員對其所在地區(qū)年齡在10~60歲間的位市民對網(wǎng)上預(yù)約掛號的了解情況作出調(diào)查,并將被調(diào)查的人員的年齡情況繪制成頻率分布直方圖,如下圖所示.
(Ⅰ)若被調(diào)查的人員年齡在20~30歲間的市民有300人,求被調(diào)查人員的年齡在40歲以上(含40歲)的市民人數(shù);
(Ⅱ)若按分層抽樣的方法從年齡在以內(nèi)及以內(nèi)的市民中隨機抽取5人,再從這5人中隨機抽取2人進(jìn)行調(diào)研,求抽取的2人中,至多1人年齡在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式。某機構(gòu)為了調(diào)查人們對此種交通方式的滿意度,從交通擁堵不嚴(yán)重的A城市和交通擁堵嚴(yán)重的B城市分別隨機調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如圖:
(1)根據(jù)莖葉圖,比較兩城市滿意度評分的平均值的大小及方差的大小(不要求計算出具體值,給出結(jié)論即可);
(2)若得分不低于80分,則認(rèn)為該用戶對此種交通方式“認(rèn)可”,否則認(rèn)為該用戶對此種交通方式“不認(rèn)可”,請根據(jù)此樣本完成此2×2列聯(lián)表,并據(jù)此樣本分析是否有95%的把握認(rèn)為城市擁堵與認(rèn)可共享單車有關(guān);
A | B | 合計 | |
認(rèn)可 | |||
不認(rèn)可 | |||
合計 |
(3)在A,B城市對此種交通方式“認(rèn)可”的用戶中按照分層抽樣的方法抽取6人,若在此6人中推薦2人參加“單車維護(hù)”志愿活動,求A城市中至少有1人的概率。
參考數(shù)據(jù)如下:(下面臨界值表供參考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式,其中)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com