11.4名同學報名參加兩個課外活動小組,每名同學限報其中的一個小組,則不同的標報名方法共有( 。
A.4種B.16種C.64種D.256種

分析 根據(jù)題意,分析可得4名同學中每個同學都有2種選法,由分步計數(shù)原理計算可得答案.

解答 解:根據(jù)題意,每個同學可以在兩個課外活動小組中任選1個,即有2種選法,
則4名同學一共有2×2×2×2=16種選法;
故選:B.

點評 本題考查分步計數(shù)原理的應用,注意沒有要求每一小組都有人報名.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分圖象如圖所示
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)求函數(shù)f(x)在區(qū)間$[{\frac{π}{6},\frac{π}{2}}]$上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知tabα=2,則tan(α-$\frac{π}{4}$)的值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若$sin(α+\frac{π}{2})=\frac{2}{3}$,則cos2α=$-\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.在銳角△ABC中,角A、B、C的對邊分別為a、b、c,若a2=b2+bc,則$\frac{a}$的取值范圍是($\sqrt{2}$,$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.二項式(9x+$\frac{1}{3\sqrt{x}}$)18的展開式的常數(shù)項為18564(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若等差數(shù)列{an}的前n項和為Sn,a2=3,a3+a5=-2,則使得Sn取最大值時的正整數(shù)n=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在△ABC中,已知M為線段AB的中點,頂點A,B的坐標分別為(4,-1),(2,5).
(Ⅰ)求線段AB的垂直平分線方程;
(Ⅱ)若頂點C的坐標為(6,2),求△ABC重心的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=(sinx+cosx)cosx,則下列說法正確的為( 。
A.函數(shù)f(x)的最小正周期為2π
B.f(x)在[$\frac{5π}{8}$,$\frac{9π}{8}$]單調(diào)遞減
C.f(x)的圖象關于直線x=-$\frac{π}{6}$對稱
D.將f(x)的圖象向右平移$\frac{π}{8}$,再向下平移$\frac{1}{2}$個單位長度后會得到一個奇函數(shù)的圖象

查看答案和解析>>

同步練習冊答案