分析 對(duì)lnx的值進(jìn)行分類討論,即lnx>0、lnx=0、lnx<0,分別求出等價(jià)函數(shù),分別求解其零點(diǎn)個(gè)數(shù),然后相加即可.
解答 解:①如果lnx>0,即x>1時(shí),
那么函數(shù)f(x)=sgn(lnx)-lnx轉(zhuǎn)化為函數(shù)f(x)=1-lnx,令1-lnx=0,得x=e,
即當(dāng)x>1時(shí).函數(shù)f(x)=sgn(lnx)-lnx的零點(diǎn)是e;
②如果lnx=0,即x=1時(shí),
那么函數(shù)f(x)=sgn(lnx)-lnx轉(zhuǎn)化為函數(shù)f(x)=0-lnx,令0-lnx=0,得x=1,
即當(dāng)x=1時(shí).函數(shù)f(x)=sgn(lnx)-lnx的零點(diǎn)是1;
③如果lnx<0,即0<x<1時(shí),
那么函數(shù)f(x)=sgn(lnx)-lnx轉(zhuǎn)化為函數(shù)f(x)=-1-lnx,令-1-lnx=0,x=$\frac{1}{e}$,
即當(dāng)0<x<1時(shí).函數(shù)f(x)=sgn(lnx)-lnx的零點(diǎn)是$\frac{1}{e}$;
綜上函數(shù)f(x)=sgn(lnx)-lnx的零點(diǎn)個(gè)數(shù)為3.
故答案為:3.
點(diǎn)評(píng) 本題主要考查了根的存在性及根的個(gè)數(shù)判斷,考查轉(zhuǎn)化思想,分類討論思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\frac{{5\sqrt{15}}}{3}$或$\sqrt{15}$ | C. | $\sqrt{5}$ | D. | $\frac{25}{3}$或3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 9 | C. | 10 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | a>c>b | C. | c>b>a | D. | c>a>b |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com