如圖,ABCD是邊長(zhǎng)為l的正方形,O為AD的中點(diǎn),拋物線的頂點(diǎn)為O,且通過(guò)點(diǎn)C,則陰影部分的面積為( 。
分析:以拋物線的頂點(diǎn)為原點(diǎn),以平行于AB的直線為x軸建立平面直角坐標(biāo)系,求出拋物線的方程,則陰影部分的面積等于正方形面積的一半減去拋物線與x=0,x=1,及x軸所圍成的曲邊梯形的面積.
解答:解:建立如圖所示的坐標(biāo)系,

因?yàn)檎叫蜛BCD的邊長(zhǎng)為1,所以C(1,
1
2
),
設(shè)拋物線方程為y=ax2(a>0),則a=
1
2
,
所以,拋物線方程為y=
1
2
x2
,
圖中陰影部分的面積為:S=1×
1
2
-∫
1
0
1
2
x2dx
=
1
2
-
1
6
x3|
1
0
=
1
2
-
1
6
=
1
3

故選D.
點(diǎn)評(píng):本題考差了定積分,考查了定積分的簡(jiǎn)單應(yīng)用,解答此題的關(guān)鍵是,正確建立平面直角坐標(biāo)系,求出拋物線的方程,找出被積函數(shù)的原函數(shù),從而運(yùn)用微積分基本定理求解,此題是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,ABCD是邊長(zhǎng)為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成角為60°.
(Ⅰ)求證:AC⊥平面BDE;
(Ⅱ)求二面角F-BE-D的余弦值;
(Ⅲ)設(shè)點(diǎn)M是線段BD上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)M的位置,使得AM∥平面BEF,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,ABCD是邊長(zhǎng)為a的菱形,且∠BAD=60°,△PAD為正三角形,且面PAD⊥面ABCD.
(1)求cos<
AB
,
PD
>的值;
(2)若E為AB的中點(diǎn),F(xiàn)為PD的中點(diǎn),求|
EF
|的值;
(3)求二面角P-BC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,ABCD是邊長(zhǎng)為2的正方形,面EAD⊥面ABCD,且EA=ED,EF∥AB,且EF=1,O是線段AD的中點(diǎn),三棱錐F-OBC的體積為
23

(1)求證:OF⊥面FBC;
(2)求二面角B-OF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寧城縣模擬)如圖,ABCD是邊長(zhǎng)為1的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF.
(Ⅰ)求證:AC⊥平面BDE;
(Ⅱ)求點(diǎn)F到平面BDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,ABCD是邊長(zhǎng)為2的正方形紙片,沿某動(dòng)直線l為折痕將正方形在其下方的部分向上翻折,使得每次翻折后點(diǎn)B都落在邊AD上,記為B';折痕與AB交于點(diǎn)E,以EB和EB’為鄰邊作平行四邊形EB’MB.若以B為原點(diǎn),BC所在直線為x軸建立直角坐標(biāo)系(如下圖):
(Ⅰ).求點(diǎn)M的軌跡方程;
(Ⅱ).若曲線S是由點(diǎn)M的軌跡及其關(guān)于邊AB對(duì)稱的曲線組成的,等腰梯形A1B1C1D1的三邊A1B1,B1C1,C1D1分別與曲線S切于點(diǎn)P,Q,R.求梯形A1B1C1D1面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案