【題目】在直角坐標系中,曲線:(為參數(shù)),曲線:(為參數(shù)),以O為極點,軸的非負半軸為極軸的極坐標系中,已知曲線的極坐標方程為,記曲線與的交點為.
(1)求點的極坐標;
(2)設(shè)曲線與相交于A,B兩點,求的值.
【答案】(1);(2)16
【解析】
(1)分別求出與的普通方程,聯(lián)立可求出點的坐標,然后轉(zhuǎn)化為極坐標即可;
(2)先將曲線化為普通方程,然后把直線的參數(shù)方程代入的普通方程,可得到關(guān)于的一元二次方程,再結(jié)合,可求出答案.
(1)曲線:(s為參數(shù)),轉(zhuǎn)化為普通方程為,曲線的極坐標方程為,轉(zhuǎn)換為直角坐標方程為,聯(lián)立,解得,即,轉(zhuǎn)換為極坐標為.
(2)曲線:(為參數(shù)),轉(zhuǎn)化為普通方程為,曲線:(s為參數(shù)),,
把直線的參數(shù)方程代入圓的普通方程,整理得,則,,
故.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象在點處的切線與直線垂直.
(1)求的單調(diào)區(qū)間;
(2)若當時,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費10元;重量超過的包裹,除收費10元之外,超過的部分,每超出(不足,按計算)需要再收費5元.該公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點值作代表).
(1)求這60天每天包裹數(shù)量的平均值和中位數(shù);
(2)該公司從收取的每件快遞的費用中抽取5元作為前臺工作人員的工資和公司利潤,剩余的作為其他費用.已知公司前臺有工作人員3人,每人每天工資100元,以樣本估計總體,試估計該公司每天的利潤有多少元?
(3)小明打算將四件禮物隨機分成兩個包裹寄出,且每個包裹重量都不超過,求他支付的快遞費為45元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知平行四邊形中,,,為邊的中點,將 沿直線翻折成.若為線段的中點,則在翻折過程中,有下列三個命題:
①線段的長是定值;
②存在某個位置,使;
③存在某個位置,使平面.
其中正確的命題有______. (填寫所有正確命題的編號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校藝術(shù)節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學對這四件參賽作品預(yù)測如下:
甲說:“是或作品獲得一等獎”; 乙說:“ 作品獲得一等獎”;
丙說:“ 兩件作品未獲得一等獎”; 丁說:“是作品獲得一等獎”.
評獎揭曉后,發(fā)現(xiàn)這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】斐波那契數(shù)列0,1,1,2,3,5,8,13,…,是意大利數(shù)學家列昂納多·斐波那契發(fā)明的,定義如下:,,.某同學設(shè)計了一個求解斐波那契數(shù)列前項和的程序框圖,如圖所示,若輸出的值為232,則處理框和判斷框中應(yīng)該分別填入( )
A.,B.,
C.,D.,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com