分析 (1)由于右焦點(diǎn)F到橢圓C的其中三個(gè)頂點(diǎn)的距離按一定順序構(gòu)成以$\sqrt{3}$為公差的等差數(shù)列,可得此三項(xiàng)分別為:a-c,a,a+c,且a=a-c+$\sqrt{3}$,
可得:c,又該數(shù)列的三項(xiàng)之和等于6,可得3a=6,b2=a2-c2.解出即可得出.
(2)設(shè)直線AB的方程為:my=x+t,A(x1,y1),B(x2,y2).與橢圓方程聯(lián)立化為:(4+m2)y2-2mty+t2-4=0,△>0,利用根與系數(shù)的關(guān)系及其2$\overrightarrow{OA}$+$\overrightarrow{OB}$=λ$\overrightarrow{OF}$,即2y1+y2=0.可得8m2t2=(4-t2)(4+m2).利用S△OAB=$\frac{1}{2}|{y}_{1}-{y}_{2}|$•|t|=$\frac{2|t|\sqrt{4+{m}^{2}-{t}^{2}}}{4+{m}^{2}}$及其基本不等式的性質(zhì)可得:4+m2=2t2.聯(lián)立解出即可得出.
解答 解:(1)∵右焦點(diǎn)F到橢圓C的其中三個(gè)頂點(diǎn)的距離按一定順序構(gòu)成以$\sqrt{3}$為公差的等差數(shù)列,
∴此三項(xiàng)分別為:a-c,a,a+c,且a=a-c+$\sqrt{3}$,
可得:c=$\sqrt{3}$,
又該數(shù)列的三項(xiàng)之和等于6,
∴3a=6,解得a=2,
∴b2=a2-c2=1.
∴橢圓C的方程為:$\frac{{x}^{2}}{4}$+y2=1.
(2)設(shè)直線AB的方程為:my=x+t,A(x1,y1),B(x2,y2).
聯(lián)立$\left\{\begin{array}{l}{my=x+t}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,化為:(4+m2)y2-2mty+t2-4=0,(*)
△>0,可得4+m2>t2.
∴y1+y2=$\frac{2mt}{4+{m}^{2}}$,y1y2=$\frac{{t}^{2}-4}{4+{m}^{2}}$.
∵滿足2$\overrightarrow{OA}$+$\overrightarrow{OB}$=λ$\overrightarrow{OF}$,
∴2y1+y2=0.
∴y1=$\frac{-2mt}{4+{m}^{2}}$,y2=$\frac{4mt}{4+{m}^{2}}$.
∴$\frac{-8{m}^{2}{t}^{2}}{(4+{m}^{2})^{2}}$=$\frac{{t}^{2}-4}{4+{m}^{2}}$.
∴8m2t2=(4-t2)(4+m2).
|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\frac{4\sqrt{4+{m}^{2}-{t}^{2}}}{4+{m}^{2}}$.
∴S△OAB=$\frac{1}{2}|{y}_{1}-{y}_{2}|$•|t|=$\frac{2|t|\sqrt{4+{m}^{2}-{t}^{2}}}{4+{m}^{2}}$≤2×$\frac{1}{4+{m}^{2}}$×$\frac{{t}^{2}+(4+{m}^{2}-{t}^{2})}{2}$=1,當(dāng)且僅當(dāng)4+m2=2t2時(shí)取等號.
聯(lián)立8m2t2=(4-t2)(4+m2),4+m2=2t2.
解得:t2=$\frac{20}{9}$,m2=$\frac{4}{9}$.
∴直線AB的方程為:$±\frac{2}{3}$y=x±$\frac{2\sqrt{5}}{3}$.
點(diǎn)評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問題、弦長公式、三角形面積計(jì)算公式、向量坐標(biāo)運(yùn)算、基本不等式的性質(zhì)、等差數(shù)列的性質(zhì),考查了推理能力與計(jì)算能力,屬于難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | $({0,\frac{1}{2}})$ | C. | $({0,\frac{1}{4}})$ | D. | $({0,\frac{1}{8}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(X2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com