16.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線及粗虛線畫出的是某多面體的三視圖,則該多面體的體積為( 。
A.6B.$\frac{20}{3}$C.7D.$\frac{22}{3}$

分析 根據(jù)三視圖可知幾何體是一個(gè)棱長(zhǎng)為2的正方體,分別在A、B、C、D四個(gè)角上截取一個(gè)直三棱柱,再由條件和主體的體積公式求出答案.

解答 解:根據(jù)三視圖可知幾何體是一個(gè)棱長(zhǎng)為2的正方體,
分別在A、B、C、D四個(gè)角上截取一個(gè)直三棱柱,底面是直角邊分別是1、1的等腰直角三角形,且高為1,
所以幾何體的體積V=2×2×2-4×$\frac{1}{2}×1×1×1$=6,
故選:A.

點(diǎn)評(píng) 本題考查三視圖求幾何體的體積,考查空間想象能力,三視圖正確復(fù)原幾何體是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.一動(dòng)點(diǎn)到兩定點(diǎn)A(0,$\frac{9}{4}$)、B(0,-$\frac{9}{4}$)的距離之和為$\frac{41}{2}$,則它的軌跡方程為$\frac{{x}^{2}}{\frac{1681}{16}}$+$\frac{{y}^{2}}{100}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,已知sinA:sinB:sinC=3:4:5,求a:b:c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x-c,0<x≤1}\\{{x}^{2}-bx-1,x>1}\end{array}\right.$在(0,+∞)上不是單調(diào)函數(shù),設(shè)b、c為常數(shù)
(1)若c=0,求b的取值范圍;
(2)若b≤2,c>1,且f(c)-f(b)≠k(c2-b2),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,AB=AA1=$\sqrt{2}$.平面OCB1的法向量$\overrightarrow{n}$=(x,y,z)為(  )
A.(0,1,1)B.(1,-1,1)C.(0,1,-1)D.(-1,-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,四棱錐P-ABCD中,底面ABCD是正方形,PA是四棱錐P-ABCD的高,PA=AB=2,點(diǎn)M,N,E分別是PD,AD,CD的中點(diǎn).
(1)求證:平面MNE∥平面ACP;
(2)求四面體AMBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是( 。
A.y=$\frac{1}{x}$B.y=-x+$\frac{1}{x}$
C.y=-x|x|D.y=$\left\{\begin{array}{l}{-x+1,x>0}\\{-x-1,x≤0}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5. 如圖,四棱柱ABCD-A1B1C1D1中,底面四邊形ABCD為菱形,∠ABC=60°,AA1=AC=2,A1B=A1D=2$\sqrt{2}$,點(diǎn)E在線段A1D上.
(Ⅰ)證明:AA1⊥平面ABCD;
(Ⅱ)當(dāng)$\frac{{A}_{1}E}{ED}$為何值時(shí),A1B∥平面EAC,并求出此時(shí)三棱錐E-ACD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.定義在(-2,2)上的奇函數(shù)f(x)恰有3個(gè)零點(diǎn),當(dāng)x∈(0,2)時(shí),f(x)=xlnx-a(x-1)(a>0),則a的取值范圍是{a|a≥2ln2,或a=1}.

查看答案和解析>>

同步練習(xí)冊(cè)答案