【題目】在平面直角坐標系中,以為極點,軸的正半軸為極軸建立的極坐標系中,直線的極坐標方程為,曲線的參數(shù)方程為為參數(shù)).

1)寫出直線及曲線的直角坐標方程;

2)過點且平行于直線的直線與曲線交于,兩點,若,求點的軌跡及其直角坐標方程.

【答案】1)直線的直角坐標方程為,曲線的直角坐標方程為.(2)點的軌跡是橢圓夾在平行直線之間的兩段。

【解析】

1)利用極坐標與直角坐標方程的互化,直接寫出直線的普通方程,消去參數(shù)可得曲線的直角坐標方程;

2)設(shè)點以及平行于直線的直線參數(shù)方程,直線與曲線聯(lián)立方程組,通過,即可求點軌跡的直角坐標方程.通過兩個交點推出軌跡方程的范圍.

解:(1直線的極坐標方程為,

直線的傾斜角為,且經(jīng)過原點,

故直線的直角坐標方程為

曲線的參數(shù)方程為為參數(shù)),

曲線的直角坐標方程為

2)設(shè)點,及過點的直線為

由直線與曲線相交可得:,

,

,即:,

軌跡的直角坐標方程,表示一橢圓.

代入得:

解得

故點的軌跡是橢圓夾在平行直線之間的兩段。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為

1)求圓的圓心到直線的距離;

2)己知,若直線與圓交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖拋物線的焦點為為拋物線上一點(軸上方),,點到軸的距離為4.

1)求拋物線方程及點的坐標;

2)是否存在軸上的一個點,過點有兩條直線,滿足,交拋物線兩點.與拋物線相切于點不為坐標原點),有成立,若存在,求出點的坐標.若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市場研究人員為了了解產(chǎn)業(yè)園引進的甲公司前期的經(jīng)營狀況,對該公司2018年連續(xù)六個月的利潤進行了統(tǒng)計,并根據(jù)得到的數(shù)據(jù)繪制了相應(yīng)的折線圖,如圖所示

(1)由折線圖可以看出,可用線性回歸模型擬合月利潤(單位:百萬元)與月份代碼之間的關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測該公司2019年3月份的利潤;

(2)甲公司新研制了一款產(chǎn)品,需要采購一批新型材料,現(xiàn)有,兩種型號的新型材料可供選擇,按規(guī)定每種新型材料最多可使用個月,但新材料的不穩(wěn)定性會導(dǎo)致材料損壞的年限不相同,現(xiàn)對,兩種型號的新型材料對應(yīng)的產(chǎn)品各件進行科學(xué)模擬測試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計如下表:

使用壽命

材料類型

個月

個月

個月

個月

總計

如果你是甲公司的負責(zé)人,你會選擇采購哪款新型材料?

參考數(shù)據(jù):,.參考公式:回歸直線方程為,其中 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如題所示的平面圖形中,為矩形,為線段的中點,點是以為圓心,為直徑的半圓上任一點(不與重合),以為折痕,將半圓所在平面折起,使平面平面,如圖2,為線段的中點.

1)證明:.

2)若銳二面角的大小為,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠打算設(shè)計一種容積為2m3的密閉容器用于貯藏原料,容器的形狀是如圖所示的直四棱柱,其底面是邊長為x米的正方形,假設(shè)該容器的底面及側(cè)壁的厚度均可忽略不計.

1)請你確定x的值,使得該容器的外表面積最小;

2)若該容器全部由某種每平方米價格為100元的材料做成,且制作該容器僅需將購置的材料做成符合需要的矩形,這些矩形即是直四棱柱形容器的上下底面和側(cè)面(假設(shè)這一過程中產(chǎn)生的費用和材料損耗可忽略不計),再將這些上下底面和側(cè)面的邊緣進行焊接即可做成該容器,焊接費用是每米500元,試確定x的值,使得生產(chǎn)每個該種容器的成本(即原料購置成本+焊接費用)最低.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果,已知正方形的邊長為2,平行軸,頂點,分別在函數(shù)的圖像上,則實數(shù)的值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在等腰梯形ABCD中,,,垂足為E,沿EC折起到的位置,如圖2所示,使平面平面ABCE.

1)連結(jié)BE,證明:平面

2)在棱上是否存在點G,使得平面,若存在,直接指出點G的位置不必說明理由,并求出此時三棱錐的體積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中曲線的參數(shù)方程為為參數(shù)),以為極點,軸的正半軸為極軸,建立極坐標系,直線的極坐標方程為.

1)求曲線的普通方程以及直線的直角坐標方程;

2)將曲線向左平移2個單位,再將曲線上的所有點的橫坐標縮短為原來的,得到曲線,求曲線上的點到直線的距離的最小值.

查看答案和解析>>

同步練習(xí)冊答案