將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線(xiàn)BD折起,使得點(diǎn)A到點(diǎn)A′的位置,且A′C=1,則折起后二面角A′-DC-B的大。ā 。
A、arctan
2
2
B、
π
4
C、arctan
2
D、
π
3
分析:由已知中將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線(xiàn)BD折起,使得點(diǎn)A到點(diǎn)A′的位置,且A′C=1,我們易得△A'DC為正三角形,則過(guò)△A'DC底邊上的路線(xiàn)A'E⊥DC,我們連接E與BD的中點(diǎn)F,則易得∠A'EF即為二面角A′-DC-B的平面角,解三角形A'EF,即可求解.
解答:精英家教網(wǎng)解:取DC的中點(diǎn)E,BD的中點(diǎn)F
連接EF,A'F
則由于△A'DC為正三角形,易得:
A'E⊥DC,EF⊥DC
則∠A'EF即為二面角A′-DC-B的平面角
又∵EF=
1
2
BC=
1
2

A'E=
3
2
,A'F=
2
2

則tan∠A'EF=
2

∠A'EF=arctan
2

故選C
點(diǎn)評(píng):求二面角的大小,一般先作出二面角的平面角.此題是利用二面角的平面角的定義作出∠A'EF為二面角A′-DC-B的平面角,通過(guò)解∠A'EF所在的三角形求得∠A'EF.其解題過(guò)程為:作∠A'EF→證∠A'EF是二面角的平面角→計(jì)算∠A'EF,簡(jiǎn)記為“作、證、算”.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線(xiàn)BD折成直二面角,若點(diǎn)P滿(mǎn)足
BP
=
1
2
BA
-
1
2
BC
+
BD
,則|
BP
|2的值為( 。
A、
3
2
B、2
C、
10-
2
4
D、
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線(xiàn)AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱錐D-ABC中,給出下列三個(gè)命題:
①面DBC是等邊三角形;  ②AC⊥BD;  ③三棱錐D-ABC的體積是
2
6

其中正確命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線(xiàn)BD折起成直二面角A-BD-C,則在這個(gè)直二面角A-BD-C中點(diǎn)A到直線(xiàn)BC的距離是
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線(xiàn)AC對(duì)折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為
2
π
3
2
π
3

查看答案和解析>>

同步練習(xí)冊(cè)答案