【題目】《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作,約成書于四、五世紀(jì),也就是大約一千五百年前,傳本的《孫子算經(jīng)》共三卷,卷中有一問題:“今有方物一束,外周一匝有三十二枚,問積幾何?”該著作中提出了一種解決問題的方法:“重置二位,左位減八,余加右位,至盡虛加一,即得.”通過對該題的研究發(fā)現(xiàn),若一束方物外周一匝的枚數(shù)是8的整數(shù)倍時,均可采用此方法求解,如圖,是解決這類問題的程序框圖,若輸入,則輸出的結(jié)果為( )

A. 120 B. 121 C. 112 D. 113

【答案】B

【解析】模擬程序的運(yùn)行,可得 執(zhí)行循環(huán)體, 不滿足條件 ,執(zhí)行循環(huán)體 不滿足條件 ,執(zhí)行循環(huán)體 ;不滿足條件 ,執(zhí)行循環(huán)體 ;不滿足條件 ,執(zhí)行循環(huán)體 ;不滿足條件 ,執(zhí)行循環(huán)體 ;滿足條件 , 退出循環(huán),輸出 的值為 ,故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義函數(shù)序列: ,f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,fn(x)=f(fn1(x)),則函數(shù)y=f2017(x)的圖像與曲線 的交點(diǎn)坐標(biāo)為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某項體育比賽中,七位裁判為一選手打出的分?jǐn)?shù)如下: 90 89 90 95 93 94 93
去掉一個最高分和一個最低分后,所剩數(shù)的平均值和方差分別為(
A.92,2
B.92,2.8
C.93,2
D.93,2.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若執(zhí)行如圖的程序框圖,則輸出的a值是(
A.2
B.﹣
C.﹣
D.﹣2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}、{bn}滿足:a1= ,an+bn=1,bn+1=
(1)求a2 , a3;
(2)證數(shù)列{ }為等差數(shù)列,并求數(shù)列{an}和{bn}的通項公式;
(3)設(shè)Sn=a1a2+a2a3+a3a4+…+anan+1 , 求實(shí)數(shù)λ為何值時4λSn<bn恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】不等式ax2+bx+c>0的解集為{x|﹣1<x<2},則不等式a(x2+1)+b(x﹣1)+c>2ax的解集為(
A.{x|0<x<3}
B.{x|x<0或x>3}
C.{x|﹣2<x<1}
D.{x|x<﹣2或x>1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x2﹣1|﹣2a+3,下列五個結(jié)論:
①當(dāng) 時,函數(shù)f(x)沒有零點(diǎn);
②當(dāng) 時,函數(shù)f(x)有兩個零點(diǎn);
③當(dāng) 時,函數(shù)f(x)有四個零點(diǎn);
④當(dāng)a=2時,函數(shù)f(x)有三個零點(diǎn);
⑤當(dāng)a>2時,函數(shù)f(x)有兩個零點(diǎn).
其中正確的結(jié)論的序號是 . (填上所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于給定的正整數(shù)k,若數(shù)列lanl 滿足

=2kan對任意正整數(shù)n(n> k) 總成立,則稱數(shù)列lanl 是“P(k)數(shù)列.學(xué)科@網(wǎng)

(1)證明:等差數(shù)列l(wèi)anl是“P(3)數(shù)列”;

若數(shù)列lanl既是“P(2)數(shù)列”,又是“P(3)數(shù)列”,證明:lanl是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線是自然對數(shù)的底數(shù))處的切線與圓在點(diǎn)處的切線平行.

(Ⅰ)證明: ;

(Ⅱ)若不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案