【題目】如圖,為矩形的邊上一點(diǎn),且,將沿折起到,使得.



1)證明:平面平面;

2)若,求平面與平面所成的銳二面角的余弦值.

【答案】(1)證明見解析;(2).

【解析】

1)取,的中點(diǎn),連接,,,則,由題意可知,,,從而證明平面,即根據(jù)線面垂直的判定定理證明平面,再利用線面垂直的性質(zhì)定理證明面面垂直即可.

2)以為原點(diǎn),,,所在直線為,軸,建立如圖所示的空間直角坐標(biāo)系.求解平面的法向量,平面的法向量,再根據(jù),計(jì)算二面角余弦值,即可.

1)取,的中點(diǎn),連接,,則

,

.

在矩形

,平面,平面

平面

平面

為梯形的兩腰,必相交,平面平面

平面,

平面

平面平面.

2)∵

.

過點(diǎn),交,則,,

為坐標(biāo)原點(diǎn),,所在直線為,,軸,建立如圖所示的空間直角坐標(biāo)系.

則各點(diǎn)坐標(biāo)為,,,.

設(shè)平面的法向量為,則,

,即,取,則

設(shè)平面的法向量為,則,

,即,,取,則,

即平面與平面所成銳二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)xlnxg(x)x2ax.

1)求函數(shù)f(x)在區(qū)間[t,t1](t0)上的最小值m(t)

2)令h(x)g(x)f(x),A(x1h(x1)),B(x2h(x2))(x1x2)是函數(shù)h(x)圖像上任意兩點(diǎn),且滿足1,求實(shí)數(shù)a的取值范圍;

3)若x(0,1],使f(x)≥成立,求實(shí)數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,,,上的點(diǎn),的面積最大值為,直線交于兩點(diǎn),且為坐標(biāo)原點(diǎn))

1)求橢圓的方程;

2)求證:到直線的距離為定值,并求其定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】超級病菌是一種耐藥性細(xì)菌,產(chǎn)生超級細(xì)菌的主要原因是用于抵抗細(xì)菌侵蝕的藥物越來越多,但是由于濫用抗生素的現(xiàn)象不斷的發(fā)生,很多致病菌也對相應(yīng)的抗生素產(chǎn)生了耐藥性,更可怕的是,抗生素藥物對它起不到什么作用,病人會(huì)因?yàn)楦腥径鹂膳碌难装Y,高燒、痙攣、昏迷直到最后死亡.某藥物研究所為篩查某種超級細(xì)菌,需要檢驗(yàn)血液是否為陽性,現(xiàn)有n)份血液樣本,每個(gè)樣本取到的可能性均等,有以下兩種檢驗(yàn)方式:

1)逐份檢驗(yàn),則需要檢驗(yàn)n次;

2)混合檢驗(yàn),將其中k)份血液樣本分別取樣混合在一起檢驗(yàn),若檢驗(yàn)結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為次,假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽性還是陰性都是獨(dú)立的,且每份樣本是陽性結(jié)果的概率為p.

1)假設(shè)有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗(yàn)方式,求恰好經(jīng)過2次檢驗(yàn)就能把陽性樣本全部檢驗(yàn)出來的概率;

2)現(xiàn)取其中k)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為.

i)試運(yùn)用概率統(tǒng)計(jì)的知識,若,試求p關(guān)于k的函數(shù)關(guān)系式;

ii)若,采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)期望值更少,求k的最大值.

參考數(shù)據(jù):,,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的極大值.

2)當(dāng)時(shí),證明函數(shù)有且只有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐中,平面平面,,且.

1)求證:;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國際上常用的衡量人體胖瘦程度以及是否健康的一個(gè)標(biāo)準(zhǔn).對于高中男體育特長生而言,當(dāng)數(shù)值大于或等于20.5時(shí),我們說體重較重,當(dāng)數(shù)值小于20.5時(shí),我們說體重較輕,身高大于或等于我們說身高較高,身高小于170cm我們說身高較矮.

1)已知某高中共有32名男體育特長生,其身高與指數(shù)的數(shù)據(jù)如散點(diǎn)圖,請根據(jù)所得信息,完成下述列聯(lián)表,并判斷是否有的把握認(rèn)為男生的身高對指數(shù)有影響.

身高較矮

身高較高

合計(jì)

體重較輕

體重較重

合計(jì)

2)①從上述32名男體育特長生中隨機(jī)選取8名,其身高和體重的數(shù)據(jù)如表所示:

編號

1

2

3

4

5

6

7

8

身高

166

167

160

173

178

169

158

173

體重

57

58

53

61

66

57

50

66

根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請完善下列殘差表,并求解釋變量(身高)對于預(yù)報(bào)變量(體重)變化的貢獻(xiàn)值(保留兩位有效數(shù)字);

編號

1

2

3

4

5

6

7

8

體重

57

58

53

61

66

57

50

66

殘差

0.1

0.3

0.9

②通過殘差分析,對于殘差的最大(絕對值)的那組數(shù)據(jù),需要確認(rèn)在樣本點(diǎn)的采集中是否有人為的錯(cuò)誤,已知通過重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應(yīng)該為.請重新根據(jù)最最小二乘法的思想與公式,求出男體育特長生的身高與體重的線性回歸方程.

(參考公式)

,,.

(參考數(shù)據(jù))

,,,.

0.10

0.05

0.01

0.005

2.706

3.811

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,求證:

(2)若,恒有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離比到軸的距離多.

1)求動(dòng)點(diǎn)的軌跡的方程;

2)設(shè),是軌跡上異于原點(diǎn)的兩個(gè)不同點(diǎn),直線的傾斜角分別為,當(dāng),變化且時(shí),證明:直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案