【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,,,是上的點(diǎn),的面積最大值為,直線(xiàn)與交于兩點(diǎn),且(為坐標(biāo)原點(diǎn))
(1)求橢圓的方程;
(2)求證:到直線(xiàn)的距離為定值,并求其定值.
【答案】(1);(2)見(jiàn)解析,
【解析】
(1)由題意可得,解得a、b、c,進(jìn)而得橢圓的方程.
(2)利用分類(lèi)討論,當(dāng)直線(xiàn)l斜率存在時(shí),設(shè)其方程,代入橢圓方程,將轉(zhuǎn)化為,即,再根據(jù)韋達(dá)定理及向量數(shù)量積的坐標(biāo)運(yùn)算,得出關(guān)于根據(jù)點(diǎn)到直線(xiàn)的距離公式得出
(1)設(shè)橢圓C的半焦距為c,由題意可知,
當(dāng)P為橢圓C的上頂點(diǎn)或下頂點(diǎn)時(shí),的面積取得最大值.
所以,所以,,
故橢圓C的標(biāo)準(zhǔn)方程為.
(2)當(dāng)直線(xiàn)l斜率存在時(shí),設(shè)其方程為,
由 ,整理得:,
由,整理得:
設(shè),,則由韋達(dá)定理得:
,
,即,
,
整理得,
化簡(jiǎn)得: ,滿(mǎn)足,
點(diǎn)O到直線(xiàn)的距離為,
當(dāng)直線(xiàn)斜率不存在時(shí),由對(duì)稱(chēng)性可求得直線(xiàn)方程為,也滿(mǎn)足題意.
故到直線(xiàn)的距離為定值,其值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在處的切線(xiàn)方程;
(2)當(dāng)時(shí)恒有成立,求滿(mǎn)足條件的m的范圍;
(3)當(dāng)時(shí),令方程有兩個(gè)不同的根,,且滿(mǎn)足,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在棱長(zhǎng)為的正方體中,O是AC的中點(diǎn),E是線(xiàn)段D1O上一點(diǎn),且D1E=λEO.
(1)若λ=1,求異面直線(xiàn)DE與CD1所成角的余弦值;
(2)若平面CDE⊥平面CD1O,求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為評(píng)估兩套促銷(xiāo)活動(dòng)方案(方案1運(yùn)作費(fèi)用為5元/件;方案2的運(yùn)作費(fèi)用為2元件),在某地區(qū)部分營(yíng)銷(xiāo)網(wǎng)點(diǎn)進(jìn)行試點(diǎn)(每個(gè)試點(diǎn)網(wǎng)點(diǎn)只采用一種促銷(xiāo)活動(dòng)方案),運(yùn)作一年后,對(duì)比該地區(qū)上一年度的銷(xiāo)售情況,制作相應(yīng)的等高條形圖如圖所示.
(1)請(qǐng)根據(jù)等高條形圖提供的信息,為該公司今年選擇一套較為有利的促銷(xiāo)活動(dòng)方案(不必說(shuō)明理由);
(2)已知該公司產(chǎn)品的成本為10元/件(未包括促銷(xiāo)活動(dòng)運(yùn)作費(fèi)用),為制定本年度該地區(qū)的產(chǎn)品銷(xiāo)售價(jià)格,統(tǒng)計(jì)上一年度的8組售價(jià)(單位:元/件,整數(shù))和銷(xiāo)量(單位:件)如下表所示:
售價(jià) | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
銷(xiāo)量 | 840 | 800 | 740 | 695 | 640 | 580 | 525 | 460 |
①請(qǐng)根據(jù)下列數(shù)據(jù)計(jì)算相應(yīng)的相關(guān)指數(shù),并根據(jù)計(jì)算結(jié)果,選擇合適的回歸模型進(jìn)行擬合;
②根據(jù)所選回歸模型,分析售價(jià)定為多少時(shí)?利潤(rùn)可以達(dá)到最大.
52446.95 | 13142 | 122.89 | |
124650 |
(附:相關(guān)指數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年底,北京2022年冬奧組委會(huì)啟動(dòng)志愿者全球招募,僅一個(gè)月內(nèi)報(bào)名人數(shù)便突破60萬(wàn),其中青年學(xué)生約有50萬(wàn)人.現(xiàn)從這50萬(wàn)青年學(xué)生志愿者中,按男女分層抽樣隨機(jī)選取20人進(jìn)行英語(yǔ)水平測(cè)試,所得成績(jī)(單位:分)統(tǒng)計(jì)結(jié)果用莖葉圖記錄如下:
(Ⅰ)試估計(jì)在這50萬(wàn)青年學(xué)生志愿者中,英語(yǔ)測(cè)試成績(jī)?cè)?/span>80分以上的女生人數(shù);
(Ⅱ)從選出的8名男生中隨機(jī)抽取2人,記其中測(cè)試成績(jī)?cè)?/span>70分以上的人數(shù)為X,求的分布列和數(shù)學(xué)期望;
(Ⅲ)為便于聯(lián)絡(luò),現(xiàn)將所有的青年學(xué)生志愿者隨機(jī)分成若干組(每組人數(shù)不少于5000),并在每組中隨機(jī)選取個(gè)人作為聯(lián)絡(luò)員,要求每組的聯(lián)絡(luò)員中至少有1人的英語(yǔ)測(cè)試成績(jī)?cè)?/span>70分以上的概率大于90%.根據(jù)圖表中數(shù)據(jù),以頻率作為概率,給出的最小值.(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】棉花的優(yōu)質(zhì)率是以其纖維長(zhǎng)度來(lái)街量的,纖維越長(zhǎng)的棉花晶質(zhì)越高.棉花的品質(zhì)分類(lèi)標(biāo)準(zhǔn)為:纖維長(zhǎng)度小于等于的為粗絨棉,纖維長(zhǎng)度在的為細(xì)絨棉,纖維長(zhǎng)度大于的為長(zhǎng)絨棉,其中纖維長(zhǎng)度在以上的棉花又名“軍海1號(hào)”.某采購(gòu)商從新疆某一棉花基地抽測(cè)了根棉花的纖維長(zhǎng)度,得到數(shù)據(jù)如下圖頻率分布表所示:
纖維長(zhǎng)度 | ||||
根數(shù) |
(1)若將頻率作為概率, 根據(jù)以上數(shù)據(jù),能否認(rèn)為該基地的這批棉花符合“長(zhǎng)絨棉占全部棉花的以上”的要求?
(2)用樣本估計(jì)總體, 若這批榨花共有,基地提出了兩種銷(xiāo)售方案給采購(gòu)商參考.方案一:不分等級(jí)賣(mài)出,每千克按元計(jì)算,方案二:對(duì)棉花先分等級(jí)再銷(xiāo)售,分級(jí)后不同等級(jí)的棉花售價(jià)如下表:
纖維長(zhǎng)度 | ||||
售價(jià) |
從來(lái)購(gòu)商的角度,請(qǐng)你幫他決策一下該用哪個(gè)方案.
(3)用分層抽樣的方法從長(zhǎng)絨棉中抽取6根棉花,再?gòu)拇?/span>根棉花中抽取兩根進(jìn)行檢驗(yàn).求抽到的兩根棉花只有一根是“軍海1號(hào)”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】超級(jí)病菌是一種耐藥性細(xì)菌,產(chǎn)生超級(jí)細(xì)菌的主要原因是用于抵抗細(xì)菌侵蝕的藥物越來(lái)越多,但是由于濫用抗生素的現(xiàn)象不斷的發(fā)生,很多致病菌也對(duì)相應(yīng)的抗生素產(chǎn)生了耐藥性,更可怕的是,抗生素藥物對(duì)它起不到什么作用,病人會(huì)因?yàn)楦腥径鹂膳碌难装Y,高燒、痙攣、昏迷直到最后死亡.某藥物研究所為篩查某種超級(jí)細(xì)菌,需要檢驗(yàn)血液是否為陽(yáng)性,現(xiàn)有n()份血液樣本,每個(gè)樣本取到的可能性均等,有以下兩種檢驗(yàn)方式:
(1)逐份檢驗(yàn),則需要檢驗(yàn)n次;
(2)混合檢驗(yàn),將其中k(且)份血液樣本分別取樣混合在一起檢驗(yàn),若檢驗(yàn)結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這k份血液究竟哪幾份為陽(yáng)性,就要對(duì)這k份再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為次,假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是獨(dú)立的,且每份樣本是陽(yáng)性結(jié)果的概率為p().
(1)假設(shè)有5份血液樣本,其中只有2份樣本為陽(yáng)性,若采用逐份檢驗(yàn)方式,求恰好經(jīng)過(guò)2次檢驗(yàn)就能把陽(yáng)性樣本全部檢驗(yàn)出來(lái)的概率;
(2)現(xiàn)取其中k(且)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為.
(i)試運(yùn)用概率統(tǒng)計(jì)的知識(shí),若,試求p關(guān)于k的函數(shù)關(guān)系式;
(ii)若,采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)期望值更少,求k的最大值.
參考數(shù)據(jù):,,,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為矩形的邊上一點(diǎn),且,將沿折起到,使得.
(1)證明:平面平面;
(2)若,求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)南宋數(shù)學(xué)家楊輝所著的《詳解九章算術(shù)》一書(shū)中,用圖①的數(shù)表列出了一些正整數(shù)在三角形中的一種幾何排列,俗稱(chēng)“楊輝三角形”,該數(shù)表的規(guī)律是每行首尾數(shù)字均為,從第三行開(kāi)始,其余的數(shù)字是它“上方”左右兩個(gè)數(shù)字之和,F(xiàn)將楊輝三角形中的奇數(shù)換成,偶數(shù)換成,得到圖②所示的由數(shù)字和組成的三角形數(shù)表,由上往下數(shù),記第行各數(shù)字的和為,如,則____________
① ②
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com