C
分析:對于(1)已知m,n是兩條不重合的直線,α,β是兩個(gè)不重合的平面,又已知m⊥α,n⊥β且m⊥n,可以看成m是平面α的法向量,n是平面β的法向量即可;
對于(2)已知m,n是兩條不重合的直線,α,β是兩個(gè)不重合的平面,又m∥α,n∥β且m∥n,則α∥β,畫圖即可判斷;
對于(3)已知m,n是兩條不重合的直線,α,β是兩個(gè)不重合的平面,又m⊥α,n∥β且m⊥n,畫圖可以加以判斷;
對于(4)已知m,n是兩條不重合的直線,α,β是兩個(gè)不重合的平面,又若m⊥α,n∥β且m∥n,則α∥β,畫圖即可.
解答:(1)利用當(dāng)兩個(gè)平面的法向量互相垂直時(shí),這兩個(gè)平面垂直,可以知道(1)正確;
(2)由題意畫出反例圖為:
有圖符合題中一切條件但兩平面相交,故(2)錯(cuò);
(3)由題意話反例圖為:
此圖符合題中的條件,但α∥β,所以(3)錯(cuò);
(4)因?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/591317.png' />?n⊥α,又因?yàn)閚∥β,利用線面平行的性質(zhì)定理可知總可以在β面內(nèi)作l使得l∥n,所以l⊥α,l?β,利用面面垂直的判定定理可以知道α⊥β,故(4)正確.
故選C.
點(diǎn)評:此題考查了線面垂直,線面平行,面面垂直,面面平行等判定及性質(zhì),還考查了學(xué)生對于問題中已知條件的重組的能力即理解題意能力.