【題目】一個人以6米/秒的勻速度去追趕停在交通燈前的汽車,當(dāng)他離汽車25米時交通燈由紅變綠,汽車開始作變速直線行駛(汽車與人的前進(jìn)方向相同),汽車在時刻t的速度為v(t)=t米/秒,那么,此人( )
A.可在7秒內(nèi)追上汽車
B.可在9秒內(nèi)追上汽車
C.不能追上汽車,但其間最近距離為14米
D.不能追上汽車,但其間最近距離為7米
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體中,四邊形是菱形, , 相交于, ,點在平面上的射影恰好是線段的中點.
(Ⅰ)求證: 平面;
(Ⅱ)若直線與平面所成的角為,求平面與平面所成角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2mx+3m+4,
(1)若f(x)在(﹣∞,1]上單調(diào)遞減,求m的取值范圍;
(2)求f(x)在[0,2]上的最大值g(m).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直線坐標(biāo)系中,以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為.
(1)直線的普通方程和曲線的參數(shù)方程;
(2)設(shè)點在上, 在處的切線與直線垂直,求的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)f(x)在x≥0時的圖象是如圖所示的拋物線的一部分,
(1)請補(bǔ)全函數(shù)f(x)的圖象
(2)求函數(shù)f(x)的表達(dá)式,
(3)寫出函數(shù)f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=2sin(2x+ )的圖象向右平移 個周期后,所得圖象對應(yīng)的函數(shù)為( )
A.y=2sin(2x+ )
B.y=2sin(2x+ )
C.y=2sin(2x﹣ )
D.y=2sin(2x﹣ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex(ax+b)-x2-4x,曲線y=f(x)在點(0,f(0))處的切線方程為y=4x+4.
(1)求a,b的值;
(2)討論f(x)的單調(diào)性,并求f(x)的極大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰三角形ABC中,AB=AC,D為CB延長線上一點,E為BC延長線上一點,且滿足AB2=DBCE.
(1)求證:△ADB∽△EAC;
(2)若∠BAC=40°,求∠DAE的度數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)甲、乙、丙三人進(jìn)行圍棋比賽,每局兩人參加,沒有平局.在一局比賽中,甲勝乙的概率為 ,甲勝丙的概率為 ,乙勝丙的概率為 .比賽順序為:首先由甲和乙進(jìn)行第一局的比賽,再由獲勝者與未參加比賽的選手進(jìn)行第二局的比賽,依此類推,在比賽中,有選手獲勝滿兩局就取得比賽的勝利,比賽結(jié)束.
(1)求只進(jìn)行了三局比賽,比賽就結(jié)束的概率;
(2)記從比賽開始到比賽結(jié)束所需比賽的局?jǐn)?shù)為ξ,求ξ的概率分布列和數(shù)學(xué)期望Eξ.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com