【題目】設(shè)函數(shù)f(x)=|2x﹣1|+|2x﹣3|,x∈R.
(1)若函數(shù)f(x)=|2x﹣1|+|2x﹣3|的最小值,并求取的最小值時x的取值范圍;
(2)若g(x)= 的定義域為R,求實數(shù)m的取值范圍.

【答案】
(1)解:由絕對值三角不等式可得,

f(x)=|2x﹣1|+|2x﹣3|≥|2x﹣1﹣2x+3|=2,

當(dāng)且僅當(dāng) .即 ,即x∈[ , ]]時等號成立,故f(x)的最小值為2


(2)解:g(x)= 的定義域為R等價于f(x)+m≠0在R上恒成立,

即f(x)+m=0在R上無解,所以m>﹣2,即實數(shù)m的取值范圍為(﹣2,+∞)


【解析】(1)根據(jù)絕對值不等式的解法,進行求解即可.(2)將g(x)= 的定義域為R,轉(zhuǎn)化為(x)+m≠0在R上恒成立,即f(x)+m=0在R上無解,結(jié)合函數(shù)的最值進行求解即可.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的定義域及其求法的相關(guān)知識,掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)f(x)給出定義:
設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是函數(shù)f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實數(shù)解x0 , 則稱點(x0 , f(x0))為函數(shù)y=f(x)的“拐點”.
某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且“拐點”就是對稱中心.給定函數(shù) ,請你根據(jù)上面探究結(jié)果,計算
=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線E:y2=2px(p>0)的準(zhǔn)線與x軸交于點K,過點K作圓(x﹣5)2+y2=9的兩條切線,切點為M,N,|MN|=3
(1)求拋物線E的方程;
(2)設(shè)A,B是拋物線E上分別位于x軸兩側(cè)的兩個動點,且 (其中O為坐標(biāo)原點).
①求證:直線AB必過定點,并求出該定點Q的坐標(biāo);
②過點Q作AB的垂線與拋物線交于G,D兩點,求四邊形AGBD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知3acosA=ccosB+bcosC.
(1)求cosA,sinA的值;
(2)若cosB+cosC= ,求cosC+ sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:等比數(shù)列{}中,公比為q,且a1=2,a4=54,等差數(shù)列{}中,公差為d,b1=2,b1+b2+b3+b4=a1+ a2+ a3.

(I)求數(shù)列{}的通項公式;

(II)求數(shù)列{}的前n項和的公式;

(III)設(shè),其中n=1,2,…,試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= 的定義域為(
A.(1,2)∪(2,3)
B.(﹣∞,1)∪(3,+∞)
C.(1,3)
D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某市民眾對某項公共政策的態(tài)度,在該市隨機抽取了名市民進行調(diào)查,做出了他們的月收入(單位:百元,范圍:)的頻率分布直方圖,同時得到他們月收入情況以及對該項政策贊成的人數(shù)統(tǒng)計表:

(1)求月收入在內(nèi)的頻率,并補全這個頻率分布直方圖,并在圖中標(biāo)出相應(yīng)縱坐標(biāo);

(2)根據(jù)頻率分布直方圖估計這人的平均月收入;

(3)若從月收入(單位:百元)在的被調(diào)查者中隨機選取人,求人都不贊成的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知C= ,向量 =(sinA,1), =(1,cosB),且
(1)求A的值;
(2)若點D在邊BC上,且3 = = ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的左右頂點為,右焦點為,一條準(zhǔn)線方程是,點為橢圓上異于的兩點,點的中點

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)直線交直線于點,記直線的斜率為,直線的斜率為,求證:為定值;

(3)若,求直線斜率的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案