點(diǎn)P(a,b)到直線
x
a
+
y
b
=1的距離為
 
考點(diǎn):點(diǎn)到直線的距離公式
專題:直線與圓
分析:直接利用點(diǎn)到直線的距離公式求解即可.
解答: 解:由點(diǎn)到直線的距離公式可得點(diǎn)P(a,b)到直線
x
a
+
y
b
=1的距離為:
|
a
a
+
b
b
-1|
(
1
a
)
2
+(
1
b
)
2
=
|ab|
a2+b2

故答案為:
|ab|
a2+b2
點(diǎn)評(píng):本題考查點(diǎn)到直線的距離公式的應(yīng)用,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若α,β是一二次方程2x2+x+3=0的兩根,則
1
α
+
1
β
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間(0,1)上任意取兩個(gè)實(shí)數(shù)a,b,則a+b<
6
5
的概率為( 。
A、
12
25
B、
18
25
C、
16
25
D、
17
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(
x2+1
+x)
(其中a>1).
(1)判斷函數(shù)y=f(x)的奇偶性,并說明理由;
(2)求函數(shù)y=f(x)的反函數(shù)y=f-1(x);
(3)若兩個(gè)函數(shù)F(x)與G(x)在閉區(qū)間[p,q]上恒滿足|F(x)-G(x)|>2,則稱函數(shù)F(x)與G(x)在閉區(qū)間[p,q]上是分離的.試判斷函數(shù)y=f-1(x)與g(x)=ax在閉區(qū)間[1,2]上是否分離?若分離,求出實(shí)數(shù)a的取值范圍;若不分離,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x∈R|
1
2
2x<8},B={x∈R|-2<x≤4}
,則A∩B等于( 。
A、(-1,3)
B、(-1,4)
C、(
1
2
,3)
D、(
1
2
,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)U=R,集合A={x|x2+4x+3=0},B={x|x2+(m+1)x+m=0}.若∁U(A)∩B=∅,則m的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線上一點(diǎn),F(xiàn)是雙曲線的右焦點(diǎn),若|PF|的最小值為
1
2
a,則該雙曲線的離心率為( 。
A、
2
B、
3
C、
5
2
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(diǎn)P(-6,3),且它在x軸上的截距是它在y軸上的截距的3倍,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右準(zhǔn)線為x=
3
2
6
,離心率為
6
3
,A(-a,0),B(0,b),光線通過點(diǎn)C(-1,0)射到線段AB上的點(diǎn)T(端點(diǎn)除外),經(jīng)過線段AB反射,其反射光線與橢圓交于點(diǎn)M.
(1)求橢圓的方程;
(2)若TC=TM,求T點(diǎn)橫坐標(biāo)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案