13.設(shè)公差不為零的等差數(shù)列{an},a1=1,a2,a4,a5成等比數(shù)列,則公差d=-$\frac{1}{5}$.

分析 利用等差數(shù)列通項公式和等比數(shù)列的性質(zhì)能求出結(jié)果.

解答 解:∵公差不為零的等差數(shù)列{an},a1=1,a2,a4,a5成等比數(shù)列,
∴(1+3d)2=(1+d)(1+4d),
解得d=-$\frac{1}{5}$或d=0(舍),
故答案為:$-\frac{1}{5}$.

點(diǎn)評 本題考查數(shù)列的公差的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列和等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在平行四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,$\overrightarrow{DE}$=2$\overrightarrow{EC}$,則$\overrightarrow{BE}$=( 。
A.$\overrightarrow$-$\frac{1}{3}$$\overrightarrow{a}$B.$\overrightarrow$-$\frac{2}{3}$$\overrightarrow{a}$C.$\overrightarrow$-$\frac{4}{3}$$\overrightarrow{a}$D.$\overrightarrow$+$\frac{1}{3}$$\overrightarrow{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若方程x2+(m+2)x+m+5=0只有正根,則m的取值范圍是( 。
A.m≤-4或m≥4B.-5<m≤-4C.-5≤m≤-4D.-5<m<-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)$命題p:\overrightarrow a=(x,-1),\overrightarrow b=(4,3),|{\overrightarrow a•\overrightarrow b}|≤1$;命題q:x2-(2a+1)x+a(a+1)≤0,若p是q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知平面內(nèi)一動點(diǎn)Q到點(diǎn)F(4,0)的距離與點(diǎn)Q到直線x=-3的距離的差等于1.
(1)求動點(diǎn)Q的軌跡C的方程;
(2)設(shè)點(diǎn)B(2,5),P(1,3),點(diǎn)Q為軌跡C的一個動點(diǎn),求$\overrightarrow{BP}$•$\overrightarrow{BQ}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.sin(75°-α)=( 。
A.sin(15°-α)B.sin(15°+α)C.cos(15°-α)D.cos(15°+α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知直線l的方程為x+2y-1=0,點(diǎn)P的坐標(biāo)為(1,-2).
(Ⅰ)求過P點(diǎn)且與直線l平行的直線方程;
(Ⅱ)求過P點(diǎn)且與直線l垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知A(1,0),B(0,1),則與$\overrightarrow{AB}$方向相同的單位向量為$(-\frac{{\sqrt{2}}}{2},-\frac{{\sqrt{2}}}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知$\frac{π}{2}$<β<α<$\frac{3}{4}$π,cos(α+β)=-$\frac{3}{5}$,sin(α-β)=$\frac{5}{13}$,求cos2β.

查看答案和解析>>

同步練習(xí)冊答案