(本題滿分10分)
若直線過點(0,3)且與拋物線y2=2x只有一個公共點,求該直線方程.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的離心率為,右焦點為(,0),斜率為1的直線與橢圓G交與A、B兩點,以AB為底邊作等腰三角形,頂點為.
(1)求橢圓G的方程;
(2)求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的離心率為,右焦點為。斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為。
(Ⅰ)求橢圓的方程;
(Ⅱ)求的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知橢圓C:(.
(1)若橢圓的長軸長為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過定點的直線與橢圓C交于不同的兩點,且為銳角(其中為坐標(biāo)原點),求直線的斜率k的取值范圍;
(3)如圖,過原點任意作兩條互相垂直的直線與橢圓()相交于四點,設(shè)原點到四邊形一邊的距離為,試求時滿足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓C:的左焦點為F,過點F的直線與橢圓C相交于A,B兩點,直線l的傾斜角為60o,.
求橢圓C的離心率;
如果|AB|=,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的離心率,過點和的直線與原點的距離為。⑴求橢圓的方程;⑵已知定點,若直線與橢圓交于兩點,問:是否存在的值,使以為直徑的圓過點?請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點,點,直線、都是圓的切線(點不在軸上)。
⑴求過點且焦點在軸上拋物線的標(biāo)準(zhǔn)方程;
⑵過點作直線與⑴中的拋物線相交于、兩點,問是否存在定點,使.為常數(shù)?若存在,求出點的坐標(biāo)與常數(shù);若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分) 已知直線L:y=x+1與曲線C:交于不同的兩點A,B;O為坐標(biāo)原點。
(1)若,試探究在曲線C上僅存在幾個點到直線L的距離恰為?并說明理由;
(2)若,且a>b,,試求曲線C的離心率e的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com