(本小題滿分12分)
已知橢圓的離心率為,右焦點(diǎn)為(,0),斜率為1的直線與橢圓G交與A、B兩點(diǎn),以AB為底邊作等腰三角形,頂點(diǎn)為
(1)求橢圓G的方程;
(2)求的面積.

(1)(2)

解析試題分析:(1)由已知得
解得,又
所以橢圓G的方程為
(2)設(shè)直線l的方程為
設(shè)A、B的坐標(biāo)分別為AB中點(diǎn)為E,

因?yàn)锳B是等腰△PAB的底邊,所以PE⊥AB.所以PE的斜率解得m=2。
此時方程①為解得所以
所以|AB|=.此時,點(diǎn)P(—3,2)到直線AB:的距離
所以△PAB的面積S=
考點(diǎn):本小題主要考查橢圓標(biāo)準(zhǔn)方程的求解和橢圓性質(zhì)的應(yīng)用.
點(diǎn)評:求解直線與圓錐曲線的位置關(guān)系問題,通常會直線方程與橢圓方程聯(lián)立方程組,此時不要忘記驗(yàn)證判別式,而且運(yùn)算量比較大,要仔細(xì)計(jì)算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,點(diǎn)B是軸上的動點(diǎn),過B作AB的垂線軸于點(diǎn)Q,若
,.

(1)求點(diǎn)P的軌跡方程;
(2)是否存在定直線,以PM為直徑的圓與直線的相交弦長為定值,若存在,求出定直線方程;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知點(diǎn)R(-3,0),點(diǎn)P在y軸上,點(diǎn)Q在x軸的正半軸上,點(diǎn)M在直線PQ上 ,且滿足,.
(Ⅰ)當(dāng)點(diǎn)P在y軸上移動時,求點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)為軌跡C上兩點(diǎn),且,N(1,0),求實(shí)數(shù),使,且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)為橢圓的右頂點(diǎn), 點(diǎn),點(diǎn)在橢圓上, .


(1)求直線的方程;
(2)求直線被過三點(diǎn)的圓截得的弦長;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知橢圓的離心率為,定點(diǎn),橢圓短軸的端點(diǎn)是,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過點(diǎn)且斜率不為的直線交橢圓,兩點(diǎn).試問軸上是否存在定點(diǎn),使平分?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知拋物線經(jīng)過橢圓的兩個焦點(diǎn).設(shè),又不在軸上的兩個交點(diǎn),若的重心(中線的交點(diǎn))在拋物線上,

(1)求的方程.
(2)有哪幾條直線與都相切?(求出公切線方程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)分別是橢圓的左,右焦點(diǎn)。
(Ⅰ)若是第一象限內(nèi)該橢圓上的一點(diǎn),且,求點(diǎn)的坐標(biāo)。
(Ⅱ)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且為銳角(其中O為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)
若直線過點(diǎn)(0,3)且與拋物線y2=2x只有一個公共點(diǎn),求該直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

查看答案和解析>>

同步練習(xí)冊答案