已知:以點(diǎn)Ct, )(t∈R , t 0)為圓心的圓與軸交于點(diǎn)O, A,與y軸交于點(diǎn)O, B,其中O為原點(diǎn).

(1)求證:△OAB的面積為定值;

(2)設(shè)直線y = –2x+4與圓C交于點(diǎn)M, N,若OM = ON,求圓C的方程.

解 (1),

 設(shè)圓的方程是 

  令,得;令,得

   ,即:的面積為定值.——4分

  (2)垂直平分線段

  ,直線的方程是

  ,解得:    ———————8分

   當(dāng)時(shí),圓心的坐標(biāo)為,  

  此時(shí)到直線的距離,

與直線相交于兩點(diǎn).    

當(dāng)時(shí),圓心的坐標(biāo)為,,

此時(shí)到直線的距離

與直線不相交,

不符合題意舍去.

的方程為.——————12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知,以點(diǎn)C(t,
2t
)為圓心的圓與x軸交于O、A兩點(diǎn),與y軸交于O、B兩點(diǎn).
(1)求證:S△AOB為定值;
(2)設(shè)直線y=-2x+4(3)與圓C交于點(diǎn)M、N,若OM=ON,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:以點(diǎn)C(t,
2t
)(t∈R,t≠0)為圓心的圓與x軸交于點(diǎn)O,A,與y軸交于點(diǎn)O,B,其中O為原點(diǎn).
(Ⅰ)當(dāng)t=2時(shí),求圓C的方程;
(Ⅱ)求證:△OAB的面積為定值;
(Ⅲ)設(shè)直線y=-2x+4與圓C交于點(diǎn)M,N,若|OM|=|ON|,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆重慶市高二上學(xué)期期末理科數(shù)學(xué)試卷 題型:解答題

已知,以點(diǎn)Ct,)為圓心的圓與x軸交于O、A兩點(diǎn),與y軸交于O、B兩點(diǎn).

1、求證:SAOB為定值;

2、設(shè)直線與圓C交于點(diǎn)MN,若OM = ON,求圓C的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市西南大學(xué)附中高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知,以點(diǎn)C(t,)為圓心的圓與x軸交于O、A兩點(diǎn),與y軸交于O、B兩點(diǎn).
(1)求證:S△AOB為定值;
(2)設(shè)直線y=-2x+4(3)與圓C交于點(diǎn)M、N,若OM=ON,求圓C的方程.

查看答案和解析>>

同步練習(xí)冊答案