12.若不等式($\frac{1}{2}$)x+($\frac{1}{3}$)x-m≥0在x∈(-∞,1]時(shí)恒成立,則實(shí)數(shù)m的取值范圍是(-∞,$\frac{5}{6}$].

分析 分離變量,利用函數(shù)的單調(diào)性求解即可.

解答 解:不等式($\frac{1}{2}$)x+($\frac{1}{3}$)x-m≥0,可得不等式($\frac{1}{2}$)x+($\frac{1}{3}$)x≥m,在x∈(-∞,1]時(shí)恒成立,
因?yàn)楹瘮?shù)y=($\frac{1}{2}$)x+($\frac{1}{3}$)x,在x∈(-∞,1]是減函數(shù),函數(shù)的最小值為:f(1)=$\frac{1}{2}+\frac{1}{3}$=$\frac{5}{6}$,
則實(shí)數(shù)m的取值范圍是:(-∞,$\frac{5}{6}$].
故答案為:(-∞,$\frac{5}{6}$].

點(diǎn)評(píng) 本題考查函數(shù)恒成立,函數(shù)的單調(diào)性的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖,設(shè)橢圓的中心為原點(diǎn)O,長(zhǎng)軸在x軸上,上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1,F(xiàn)2,線段OF1,OF2的中點(diǎn)分別為B1,B2,且△AB1B2是面積為4的直角三角形.過(guò)B1作l交橢圓于P、Q兩點(diǎn),使PB2垂直QB2,求直線l的方程x+2y+2=0和x-2y+2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1{0}^{-x}-2,x≤0}\\{2ax-1,x>0}\end{array}\right.$(a是常數(shù),a>0).給出下列命題:
①函數(shù)的最小值為-1;
②若方程m=|f(x+k)|(k∈R)有兩個(gè)零點(diǎn),則m≥1
③若f(x)>0在[$\frac{1}{2}$,+∞)上恒成立,則a的取值范圍是a≥1
④對(duì)任意的x1,x2∈(-∞,0)且x1≠x2,恒有f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{f({x}_{1})+f({x}_{2})}{2}$.
其中正確命題的序號(hào)是①④.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)y=f(x),y=g(x)的值域均為R,有以下命題:
①若對(duì)于任意x∈R都有f[f(x)]=f(x)成立,則f(x)=x.
②若對(duì)于任意x∈R都有f[f(x)]=x成立,則f(x)=x.
③若存在唯一的實(shí)數(shù)a,使得f[g(a)]=a成立,且對(duì)于任意x∈R都有g(shù)[f(x)]=x2-x+1成立,則存在唯一實(shí)數(shù)x0,使得g(ax0)=1,f(x0)=a.
④若存在實(shí)數(shù)x0,y0,f[g(x0)]=x0,且g(x0)=g(y0),則x0=y0
其中是真命題的序號(hào)是①③④.(寫出所有滿足條件的命題序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若曲線y=ex在某點(diǎn)處的切線l過(guò)原點(diǎn)O,則l的斜率為e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知集合A={x|1≤x≤2},集合B={x|x≤a},若A∩B≠∅,則實(shí)數(shù)a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.對(duì)任意實(shí)數(shù)a,b,c,給出下列命題:
①“a=b”是“ac=bc”的充要條件;
②“a+5是無(wú)理數(shù)”是“a是無(wú)理數(shù)”的充要條件;
③“a>b”是“a2>b2”的充分條件;
④“a<4”是“a<3”的必要條件;
其中真命題的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.從k2+1(k∈N)開(kāi)始,連續(xù)2k+1個(gè)自然數(shù)的和等于( 。
A.(k+1)3B.(k+1)3+k3C.(k-1)3+k3D.(2k+1)(k+1)3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.用系統(tǒng)抽樣的方法從160人中抽取容量為20的一個(gè)樣本,將160名學(xué)生隨機(jī)地編為1,2,3,…160,并按序號(hào)順次平分成20組.若從第13組抽得的是101號(hào).則從第3組中抽得的號(hào)碼是( 。
A.17B.21C.23D.29

查看答案和解析>>

同步練習(xí)冊(cè)答案