(本題12分)
已知橢圓的右焦點為F,上頂點為A,P為C上任一點,MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若的最大值為49,求橢圓C的方程.
(Ⅰ) (Ⅱ)。
解析試題分析:(Ⅰ)由題意可知直線l的方程為,
因為直線與圓相切,所以,即
從而 …………………5分
(Ⅱ)設(shè)、圓的圓心記為,則
(﹥0),又=
. …………………8分
j當(dāng);
k當(dāng)
故舍去.
綜上所述,橢圓的方程為. …………………12分
考點:橢圓的標(biāo)準(zhǔn)方程及簡單性質(zhì);直線與圓的位置關(guān)系;直線方程的截距式;平面向量的數(shù)量積;點到直線的距離公式。
點評:本題主要考查直線、圓、橢圓的基本性質(zhì)及位置關(guān)系的應(yīng)用,滲透向量、函數(shù)最值等問題,培養(yǎng)學(xué)生綜合運用知識的能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題13分)設(shè)橢圓的左右焦點分別為,,上頂點為,過點與垂直的直線交軸負(fù)半軸于點,且是的中點.
(1)求橢圓的離心率;
(2)若過點的圓恰好與直線相切,求橢圓的方程;
(3)在(2)的條件下過右焦點作斜率為的直線與橢圓相交于兩點,在軸上是否存在點使得以為鄰邊的平行四邊形為菱形,如果存在,求出的取值范圍,如果不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分) 已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點,左焦點為,且過,設(shè)點.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動點,求線段中點的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點,焦點在坐標(biāo)軸上的橢圓,它的離心率為,一個焦點和拋物線的焦點重合,過直線上一點M引橢圓的兩條切線,切點分別是A,B.
(Ⅰ)求橢圓的方程;
(Ⅱ)若在橢圓上的點處的橢圓的切線方程是. 求證:直線恒過定點;并出求定點的坐標(biāo).
(Ⅲ)是否存在實數(shù),使得恒成立?(點為直線恒過的定點)若存在,求出的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知橢圓經(jīng)過點,且其右焦點與拋物線的焦點F重合.
(Ⅰ)求橢圓的方程;
(II)直線經(jīng)過點與橢圓相交于A、B兩點,與拋物線相交于C、D兩點.求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,斜率為1的直線過拋物線的焦點F,與拋物線交于兩點A,B,
(1)若|AB|=8,求拋物線的方程;
(2)設(shè)C為拋物線弧AB上的動點(不包括A,B兩點),求的面積S的最大值;
(3)設(shè)P是拋物線上異于A,B的任意一點,直線PA,PB分別交拋物線的準(zhǔn)線于M,N兩點,證明M,N兩點的縱坐標(biāo)之積為定值(僅與p有關(guān))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題16分)設(shè)雙曲線:的焦點為F1,F2.離心率為2。
(1)求此雙曲線漸近線L1,L2的方程;
(2)若A,B分別為L1,L2上的動點,且2,求線段AB中點M的軌跡方程,并說明軌跡是什么曲線。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知橢圓的離心率為,且橢圓上一點與橢圓的兩個焦點構(gòu)成的三角形周長為.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于兩點,且以為直徑的圓過橢圓的右頂點,
求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分9分)已知頂點在原點,焦點在軸上的拋物線過點.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過點作直線交拋物線于兩點,使得恰好平分線段,求直線的方程
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com