16.不等式x2+x-2<0的解集為( 。
A.(-1,2)B.(-∞,-1)∪(2,+∞)C.(-2,1)D.(-∞,-2)∪(1,+∞)

分析 本題不等式化為(x+2)(x-1)<0,求出不等式對應(yīng)方程的兩個實數(shù)根,即可寫出該不等式的解集.

解答 解:不等式x2+x-2<0可化為(x+2)(x-1)<0,
該不等式對應(yīng)方程的兩個實數(shù)根是-2和1,
所以該不等式的解集為(-2,1).
故選:C.

點評 本題考查了一元二次不等式的解法與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.將函數(shù)y=sinx的圖象上每個點的橫坐標縮短為原來的$\frac{1}{2}$,縱坐標不變,再將所得圖象向左平移$\frac{π}{6}$個單位后,得到函數(shù)f(x)的圖象,則函數(shù)f(x)的解析式為( 。
A.$f(x)=sin({2x+\frac{π}{3}})$B.$f(x)=sin({2x+\frac{π}{6}})$C.$f(x)=sin({\frac{1}{2}x+\frac{π}{3}})$D.$f(x)=sin({\frac{1}{2}x+\frac{π}{6}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若將函數(shù)$f(x)=\sqrt{3}sin2x+cos2x$的圖象上的各個點向左平移n(n>0)個單位長度,得到的圖象關(guān)于y軸對稱,則n的最小正數(shù)為( 。
A.$\frac{5π}{6}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標系xOy中,已知曲線C上任意一點到點$(\frac{3}{2},0)$的距離與到直線$x=-\frac{3}{2}$的距離相等.
(1)求曲線C的方程;
(2)若曲線C上的兩個動點A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=4,線段AB的垂直平分線與x軸交于點C,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.△ABC中,$c=\sqrt{3},b=1,∠B=\frac{π}{6}$,則△ABC的形狀一定為( 。
A.等腰直角神經(jīng)性B.直角三角形
C.等邊三角形D.等腰三角形或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.函數(shù)f(x)是定義在(0,+∞)上的增函數(shù),f(2)=1,且對任意的x,y>0滿足f(x)+f(y)=f(xy).
(1)計算f(1),f(4);
(2)解不等式f(x)-f(x-3)≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知奇函數(shù)$f(x)=\left\{{\begin{array}{l}{-{x^2}+4x(x>0)}\\{0(x=0)}\\{{x^2}+mx(x<0)}\end{array}}\right.$

(1)求實數(shù)m的值,并在給出的平面直角坐標系中畫出函數(shù)y=f(x)的圖象;
(2)若函數(shù)f(x)在區(qū)間[-2,a-2]上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.拋擲兩枚骰子,求
(1)點數(shù)之和是奇數(shù)的概率;
(2)點數(shù)之積是偶數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,拿一張矩形的紙對折后略微展開,豎立在桌面上,折痕與桌面的位置關(guān)系是垂直.

查看答案和解析>>

同步練習(xí)冊答案