用二分法求方程x3-2x-5=0在區(qū)間[2,3]上的近似解,取區(qū)間中點x0=2.5,那么下一個有解區(qū)間為            。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),又向右平移1個單位,向上平移2個單位得到.
(I)判斷的奇偶性,并求出的極大值與極小值之和.
(II)過點且方向向量為的直線與的圖像相切,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題14分)
已知函數(shù),實數(shù)a,b為常數(shù)),
(1)若a=1,在(0,+∞)上是單調(diào)增函數(shù),求b的取值范圍;
(2)若a≥2,b=1,求方程在(0,1]上解的個數(shù)。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分16分)是定義在D上的函數(shù),若對任何實數(shù)以及D中的任意兩數(shù),恒有,則稱為定義在D上的C函數(shù).
(Ⅰ)試判斷函數(shù),中哪些是各自定義域上的C函數(shù),并說明理由;
(Ⅱ)已知是R上的C函數(shù),m是給定的正整數(shù),設(shè),且,記. 對于滿足條件的任意函數(shù),試求的最大值;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

本小題9分
如圖二某單位建造一間地面面積為12m2的背面靠墻的矩形小房,由于地理位置的限制,房子側(cè)面的長度x,房屋正面的造價為400元/m2,房屋側(cè)面的造價為150元/m2,屋頂和地面的造價費用合計為5800元,如果墻高為3m,且不計房屋背面的費用
(1)把房屋總造價表示成的函數(shù),并寫出該函數(shù)的定義域。

圖二

 
(2)當側(cè)面的長度為多少時,總造價最底?最低總造價是多少?

 
               

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知對任意實數(shù),有,且,則時(   ).
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)內(nèi)的圖象如圖所示,若函數(shù)

的導函數(shù)的圖象也是連續(xù)不間斷的,
則導函數(shù)內(nèi)有零點(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)函數(shù)                           ( ▲ )
A.在區(qū)間內(nèi)均有零點
B.在區(qū)間內(nèi)均無零點
C.在區(qū)間內(nèi)有零點,在區(qū)間內(nèi)無零點
D.在區(qū)間內(nèi)無零點,在區(qū)間內(nèi)有零點

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

表示,兩個數(shù)中的最小值,設(shè)),則由函數(shù)的圖象,軸與直線和直線所圍成的封閉圖形的面積為_____

查看答案和解析>>

同步練習冊答案