已知函數a為常數且a>0.
(1)證明:函數f(x)的圖像關于直線x=對稱;
(2)若x0滿足f(f(x0))= x0,但f(x0)≠x0,則x0稱為函數f(x)的二階周期點,如果f(x)有兩個二階周期點x1,x2,試確定a的取值范圍;
(3)對于(2)中的x1,x2,和a,設x3為函數f(f(x))的最大值點,A(x1,f(f(x1))),B(x2,f(f(x2))),C(x3,0),記△ABC的面積為S(a),討論S(a)的單調性.
科目:高中數學 來源: 題型:解答題
已知定義域為的函數同時滿足以下三個條件:
(1) 對任意的,總有;(2);(3) 若,,且,則有成立,則稱為“友誼函數”,請解答下列各題:
(1)若已知為“友誼函數”,求的值;
(2)函數在區(qū)間上是否為“友誼函數”?并給出理由.
(3)已知為“友誼函數”,假定存在,使得且, 求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設函數f(x)=log3(9x)·log3(3x),≤x≤9.
(1)若m=log3x,求m的取值范圍.
(2)求f(x)的最值,并給出最值時對應的x的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如果函數的定義域為R,對于定義域內的任意,存在實數使得成立,則稱此函數具有“性質”。
(1)判斷函數是否具有“性質”,若具有“性質”,求出所有的值;若不具有“性質”,說明理由;
(2)已知具有“性質”,且當時,求在上有最大值;
(3)設函數具有“性質”,且當時,.若與交點個數為2013,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的左焦點為,左、右頂點分別為,過點且傾斜角為的直線交橢圓于兩點,橢圓的離心率為,.
(1)求橢圓的方程;
(2)若是橢圓上不同兩點,軸,圓過點,且橢圓上任意一點都不在圓內,則稱圓為該橢圓的內切圓.問橢圓是否存在過點的內切圓?若存在,求出點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=(x+2)ln(x+1)-ax2-x(a∈R),g(x)=ln(x+1).
(1)若a=0,F(xiàn)(x)=f(x)-g(x),求函數F(x)的極值點及相應的極值.
(2)若對于任意x2>0,存在x1滿足x1<x2且g(x1)=f(x2)成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com