某公司新研究了一種預(yù)防白菜腐爛的藥,為了考查這種藥物的效果,工作人員對(duì)一地里的白菜進(jìn)行了實(shí)驗(yàn),得到如下的一組數(shù)據(jù):
腐爛未腐爛總計(jì)
用藥104555
沒用藥203050
總計(jì)3075105
因此,在犯錯(cuò)誤的概率不超過
 
%的情況下,我們有把握認(rèn)為這種藥起到了預(yù)防白菜腐爛的效果.
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:根據(jù)表格中的數(shù)據(jù),求出k,再與臨界值比較可得結(jié)論.
解答: 解:k=
105×(10×30-45×20)2
55×50×75×30
=6.109>5.024.
∴在犯錯(cuò)誤的概率不超過2.5%的情況下,我們有把握認(rèn)為這種藥起到了預(yù)防白菜腐爛的效果.
故答案為:2.5.
點(diǎn)評(píng):本題的考點(diǎn)是獨(dú)立性檢驗(yàn)的應(yīng)用,考查利用獨(dú)立性檢驗(yàn)解決實(shí)際問題,解題的關(guān)鍵是利用公式正確計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-3,x>0
g(x),x<0
是(-∞,+∞)上的奇函數(shù),則g(-1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+1),g(x)=a(2x-x2)(a≠0,a∈R).
(1)若關(guān)于x的不等式g(x)≤bx-2的解集為{x|-2≤x≤-1},求實(shí)數(shù)a,b的值;
(2)若對(duì)于任意的x>3,f(x)≤g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)物體的運(yùn)動(dòng)方程是s=1-t+t2,其中s的單位是米,t的單位是秒,那么該物體在4秒末的瞬時(shí)速度是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平移坐標(biāo)軸,將坐標(biāo)原點(diǎn)移至O′(1,1),則x′2+y′2+2x′-2y′+1=0在原坐標(biāo)系中的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=
-x2+2x+3
-
3
(x∈[0,2])的圖象繞坐標(biāo)原點(diǎn)逆時(shí)針旋轉(zhuǎn)θ(θ為銳角),若所得曲線仍是一個(gè)函數(shù)的圖象,則θ的范圍是( 。
A、(0,
π
3
]
B、(0,
π
3
C、(
π
3
,
π
2
D、[
π
3
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了了解學(xué)生對(duì)新課程改革的滿意情況,有關(guān)教育部門對(duì)某中學(xué)的100名學(xué)生隨機(jī)進(jìn)行了調(diào)查,得到如下的統(tǒng)計(jì)表:
滿 意不滿意合 計(jì)
男 生50
女 生15
合 計(jì)100
已知在全部100名學(xué)生中隨機(jī)抽取1人對(duì)課程改革滿意的概率為
4
5
.參照附表,得到的正確結(jié)論是( 。
A、在犯錯(cuò)誤的概率不超過0.1%的情況下,有把握說學(xué)生對(duì)新課程改革工作的滿意情況與性別有關(guān)
B、在犯錯(cuò)誤的概率不超過0.1%的情況下,有把握說學(xué)生對(duì)新課程改革工作的滿意情況與性別無關(guān)
C、在犯錯(cuò)誤的概率不超過0.5%的情況下,有把握說學(xué)生對(duì)新課程改革工作的滿意情況與性別有關(guān)
D、在犯錯(cuò)誤的概率不超過0.5%的情況下,有把握說學(xué)生對(duì)新課程改革工作的滿意情況與性別無關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=tan3x的最小正周期為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(3,-1),
b
=(k,7),若
a
+
b
與3
a
-2
b
平行,則實(shí)數(shù)k等于( 。
A、-21B、21C、2D、0

查看答案和解析>>

同步練習(xí)冊(cè)答案