(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

平面直角坐標(biāo)系xoy中,軸上有一點(diǎn)A(0,1),在軸上任取一點(diǎn)P,過點(diǎn)PP A的垂線.

(1)若過點(diǎn)Q(3,2),求點(diǎn)P應(yīng)取在何處;

(2)直線能否過點(diǎn)R(3,3),并說明理由;

(3)點(diǎn)P軸上移動時,試確定直線移動的區(qū)域(即直線可以經(jīng)過的點(diǎn)的集合),并在給定的坐標(biāo)系中用陰影部分表示出來.

(文)解:(1)設(shè)Pa ,0),則 ,,由題意得,所以,       …………………………………………………………………………2

解得,所以點(diǎn)P應(yīng)取在(2,0)或(1,0);        …………………………………2

(2)不能過點(diǎn)R(3,3);因?yàn)槿?img width=9 height=19 src="http://thumb.1010pic.com/pic1/0688/228/349728.gif" >過點(diǎn)R,設(shè)Pa ,0), …………………………2分

 ,,由題意得,所以,即,……………………………………………………………………………2分

因?yàn)?img width=108 height=19 src="http://thumb.1010pic.com/pic1/0688/234/349734.gif" >,所以點(diǎn)P取不到,從而不能過點(diǎn)R(3,3). ……………2分

(3)設(shè)直線可以經(jīng)過點(diǎn)B(x,y,P(a,0),………………………………………1

,

有解,………………………………………3

所以,直線可以經(jīng)過的點(diǎn)B的集合是,即直線移動的區(qū)域是拋物線及以下部分!2

簡圖如右…………………………………………………………2

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分18分,第(1)小題6分,第(2)小題6分,第(3)小題6分)

若數(shù)列滿足:是常數(shù)),則稱數(shù)列為二階線性遞推數(shù)列,且定義方程為數(shù)列的特征方程,方程的根稱為特征根; 數(shù)列的通項公式均可用特征根求得:

①若方程有兩相異實(shí)根,則數(shù)列通項可以寫成,(其中是待定常數(shù));

②若方程有兩相同實(shí)根,則數(shù)列通項可以寫成,(其中是待定常數(shù));

再利用可求得,進(jìn)而求得

根據(jù)上述結(jié)論求下列問題:

(1)當(dāng),)時,求數(shù)列的通項公式;

(2)當(dāng))時,求數(shù)列的通項公式;

(3)當(dāng))時,記,若能被數(shù)整除,求所有滿足條件的正整數(shù)的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆上海市盧灣區(qū)高三上學(xué)期期末數(shù)學(xué)理卷 題型:解答題

(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分8分,第3小題滿分6分.
已知負(fù)數(shù)和正數(shù),且對任意的正整數(shù)n,當(dāng)≥0時, 有[, ]=
[, ];當(dāng)<0時, 有[, ]= [, ].
(1)求證數(shù)列{}是等比數(shù)列;
(2)若,求證;
(3)是否存在,使得數(shù)列為常數(shù)數(shù)列?請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟(jì)寧市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分18分)已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸正半軸上,點(diǎn)到其準(zhǔn)線的距離等于5.

(Ⅰ)求拋物線C的方程;

(Ⅱ)如圖,過拋物線C的焦點(diǎn)的直線從左到右依次與拋物線C及圓交于A、C、D、B四點(diǎn),試證明為定值;

(Ⅲ)過AB分別作拋物C的切線交于點(diǎn)M,求面積之和的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市青浦區(qū)高三上學(xué)期期終學(xué)習(xí)質(zhì)量調(diào)研測試數(shù)學(xué)試卷 題型:解答題

(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

設(shè),對于項數(shù)為的有窮數(shù)列,令中最大值,稱數(shù)列的“創(chuàng)新數(shù)列”.例如數(shù)列3,5,4,7的創(chuàng)新數(shù)列為3,5,5,7.

考查自然數(shù)的所有排列,將每種排列都視為一個有窮數(shù)列

(1)若,寫出創(chuàng)新數(shù)列為3,4,4,4的所有數(shù)列

(2)是否存在數(shù)列的創(chuàng)新數(shù)列為等比數(shù)列?若存在,求出符合條件的創(chuàng)新數(shù)列;若不存在,請說明理由.

(3)是否存在數(shù)列,使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出滿足所有條件的數(shù)列的個數(shù);若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題

(本題滿分18分,其中第1小題6分,第2小題6分,第3小題6分)
已知數(shù)列的首項為1,前項和為,且滿足,.?dāng)?shù)列滿足.
(1) 求數(shù)列的通項公式;
(2) 當(dāng)時,試比較的大小,并說明理由;
(3) 試判斷:當(dāng)時,向量是否可能恰為直線的方向向量?請說明你的理由.

查看答案和解析>>

同步練習(xí)冊答案